• Title/Summary/Keyword: high-manganese

Search Result 471, Processing Time 0.024 seconds

High Nitrogen-Bearing Austenitic Stainless Steels Resistant to Marine Corrosion

  • Kodama, Toshiaki;Katada, Yasuyuki;Baba, Haruo;Sagara, Masayuki
    • Corrosion Science and Technology
    • /
    • v.2 no.6
    • /
    • pp.272-276
    • /
    • 2003
  • High nitrogen-bearing stainless steel (HNS) containing more than Imass% N was successfully created by means of pressurized electro-slag remelting (P-ESR) without the addition of manganese. Excellent localized corrosion resistant properties of the HNS were confirmed in terms of pitting and crevice corrosion in artificial seawater. The repassivation kinetics proved higher repassivation rate for HNS.

The Application of SIS (Sequential Indicator Simulation) for the Manganese Nodule Fields (망간단괴광상의 매장량평가를 위한 SIS (Sequential Indicator Simulation)의 응용)

  • Park, Chan Young;Kang, Jung Keuk;Chon, Hyo Taek
    • Economic and Environmental Geology
    • /
    • v.30 no.5
    • /
    • pp.493-498
    • /
    • 1997
  • The purpose of this study is to develop geostatistical model for evaluating the abundance of deep-sea manganese nodule. The abundance data used in this study were obtained from the KODOS (Korea Deep Ocean Study) area. The variation of nodule abundance was very high within short distance, while sampling methods was very limited. As the distribution of nodule abundance showed non-gaussian, indicator simulation method was used instead of conditional simulation method and/or ordinary kriging. The abundance data were encoded into a series of indicators with 6 cutoff values. They were used to estimate the conditional probability distribution function (cpdf) of the nodule abundance at any unsampled location. The standardized indicator variogram models were obtained according to variogram analysis. This SIS method had the advantage over other traditional techniques such as the turning bands method and ordinary kriging. The estimating values by indicator conditional simulation near high abundance area were more detailed than by ordinary kriging and indicator kriging. They also showed better spatial characteristics of distribution of nodule abundance.

  • PDF

Relationship Between Mechanical Properties and Damping Capacity in Stainless Steel with Two Phases of Reversed Austenite and Deformation Induced Martensite (역변태 오스테나이트와 가공유기 마르텐사이트의 2상 혼합조직을 갖는 스테인리스강의 기계적 성질과 감쇠능)

  • Namgung, Won;Jung, Mok-Hwan;Lee, Hyang-Beak;Kim, Jae-Nam;Kang, Chang-Young
    • Journal of Power System Engineering
    • /
    • v.17 no.2
    • /
    • pp.114-120
    • /
    • 2013
  • This study was carried out to investigate the relationship between mechanical properties and damping capacity in high manganese austenitic stainless steel with two phase mixed structure of reversed austenite and deformation induced martensite. Reversed austenite of ultra-fine grain size less than $0.3{\mu}m$ was obtained by reversion treatment. Two phase structure of deformation induced martensite and reversed austenite was obtained by annealing treatment at range of $500^{\circ}C{\sim}700^{\circ}C$ for various time in cold rolled high manganese austenite stainless steel. In stainless steel with two phase mixed structure of martensite and austenite, damping capacity decreased rapidly with the increasing hardness and strength. With the increasing elongation, damping capacity was increased rapidly and then, slowly increased.

Novel Method to Confine Manganese Oxide Nanoparticles in Polyaniline Hollow Nanospheres and Its Supercapacitive Properties

  • Kwon, Hyemin;Lee, Jinho;Munkhbaatar, Naranchimeg;Yim, Sanggyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.196.2-196.2
    • /
    • 2014
  • Nanostructuring the electrode surface is an emerging technology to improve the performance of supercapacitors since it can facilitate charge transfer, ion diffusion and electron propagation during electrochemical process. Fabrication of the electrode consisting of two or more materials together has also been focused on since it can provide synergetic effect such as broader working potential range and enhanced capacitance. In this work, we have used polyaniline (PANi) and manganese oxide (MnO2) as electrode materials. PANi is one of the promising electrode materials due to its high electrochemical activity, high doping level and stability. MnO2 is also widely studied material for supercapacitors since it is relatively cheap and environmentally friendly. Firstly, we synthesized polystyrene nanospheres on MnO2 nanoparticles. MnO2-incorporated PANi hollow nanospheres were then fabricated by polymerizing aniline monomers on these PS nanospheres and dissolving the inner PS spheres. The surface morphology, electronic absorption and electrical conductivity of the electrode were analyzed using field-emission scanning electron microscope (FE-SEM), UV-visible spectrometer, and sheet resistivity meter, respectively. The electrochemical properties such as capacitance of the supercapacitors were also estimated using cyclic voltammetry.

  • PDF

On the Manufacture of High Manganese Steel Plate (고(高)망간강(鋼) 판재(板材) 제조(製造)에 대한 연구(硏究))

  • Choi, Ju;Shin, Myung-Chul
    • Applied Microscopy
    • /
    • v.7 no.1
    • /
    • pp.45-49
    • /
    • 1977
  • For obtaining high manganese steel plates, the study has been made on the optimum conditions in melting, forging, rolling and water toughning treatment practices. The optimum water toughning temperature and time was found to be $1030^{\circ}C$ and 30 min. respectively for the plates of 1 mm thickness. The argon atmosphere is very effective for the prevention of decarburization which can be easily occured in open air. There is a close relation between the degree of c 이 d working and the hardess. The greater the cold reduction ratio is, the smaller the grain size is and it results in the increase of hardness. The improvement of tensile and bending properties can be made by the addition of small amount of nickel, chromium and vanadium.

  • PDF

Effect of Retained and Reversed Austenite on the Damping Capacity in High Manganese Stainless Steel (고 Mn 스테인리스강의 감쇠능에 미치는 잔류 및 역변태 오스테나이트의 영향)

  • Kim, Y.H.;Lee, S.H.;Kim, S.G.;Kang, C.Y.
    • Korean Journal of Materials Research
    • /
    • v.25 no.1
    • /
    • pp.9-15
    • /
    • 2015
  • The effect of retained and reversed austenite on the damping capacity in high manganese stainless steel with two phases of martensite and austenite was studied. The two phase structure of martensite and retained austenite was obtained by deformation for various degrees of deformation, and a two phase structure of martensite and reverse austenite was obtained by reverse annealing treatment for various temperatures after 70 % cold rolling. With the increase in the degree of deformation, the retained austenite and damping capacity rapidly decreased, with an increase in the reverse annealing temperature, the reversed austenite and damping capacity rapidly increased. With the volume fraction of the retained and reverse austenite, the damping capacity increased rapidly. At same volume of retained and reversed austenite, the damping capacity of the reversed austenite was higher than the retained austenite. Thus, the damping capacity was affected greatly by the reversed austenite.

High-Temperature Deformation Behavior of MnS in 1215MS Steel

  • Huang, Fei-Ya;Su, Yen-Hao Frank;Kuo, Jui-Chao
    • Metals and materials international
    • /
    • v.24 no.6
    • /
    • pp.1333-1345
    • /
    • 2018
  • The effect of manganese sulfide (MnS) inclusions on the machinability of free-cutting steel is based on their morphology, size and distribution. Furthermore, the plasticity of MnS is high during the hot working caused different characterization of MnS. In this study, the deformation behavior of MnS in 1215MS steel after a thermomechanical process was investigated at 1323 K. The microstructures of MnS inclusions were characterized by optical microscopy, scanning electron microscopy, energy-dispersive spectrometry, and electron backscattering diffraction (EBSD). As the thickness reduction of the inclusions increased from 10 to 70%, their average aspect ratio increased from 1.20 to 2.39. In addition, the deformability of MnS inclusions was lower than that of the matrix. The possible slip systems of A, B, C, and D plane traces were (${\bar{1}}0{\bar{1}}$)[${\bar{1}}01$], ($10{\bar{1}}$)[101], (011)[$01{\bar{1}}$], and (110)[$1{\bar{1}}0$]. Furthermore, the EBSD measurements suggested that slip planes in MnS inclusions occur on {110} planes.

SiO2-CaO-MnO Correlations and Distributions of KODOS Manganese Nodules (KODOS 망간단괴의 SiO2-CaO-MnO 상관관계와 분포양상)

  • Chang, Se-Won;Choi, Hun-Soo;Kang, Jung-Seok;Kong, Gee-Soo;Lee, Sung-Rock;Chang, Jeong-Hae
    • Ocean and Polar Research
    • /
    • v.26 no.2
    • /
    • pp.199-205
    • /
    • 2004
  • $SiO_2$ and CaO are added to decrease the smelting temperature in the reduction-smelting method for manganese nodule processing. These elements are components of the manganese nodules and might be very important controlling factors in the processing due to the locally variable content. The 707 chemical data of manganese nodules acquired from 1994 to 2001 in KODOS(Korea Deep Ocean Survey) area were used for the hierarchical cluster analysis. The chemical data were classified by the morphological types, and the averages of the chemical data for each station were classified by the facies groups and the localities. All data are plotted on the $SiO_2-CaO-MnO$ phase diagram at $1773^{\circ}K$ to compare with the best compositional area in the nodule smelting. Variations and distributions of $SiO_2$ and CaO in KODOS nodules were also reviewed. The mineral phases assigned by the cluster analysis are CFA(Carbonate Fluorapatite), Fe-oxide, Al-silicate, and Mn-oxide. MnO contents are generally higher than $SiO_2$ contents in most of the morphological types except for the Is- and It-type. The Dt- and Tt-type show wider range and the E-types show high anomaly in their CaO contents. The stations which belong to facies group A and B show generally higher MnO contents than $SiO_2$ contents, however, the stations of facies group C and D show wide range in their MnO and $SiO_2$ contents. It seems to be very important to control the $SiO_2$ contents in the processing because of the wide range in the northern area. The additions of approximately 10 wt.% CaO and 10 wt.% $SiO_2$ are recommended for the northern area, whereas, the additions of approximately 10 wt.% CaO and 20 wt.% $SiO_2$ are recommended for the southern area.

Refinement of the manganese nitrate solution prepared by leaching the reduced Ferromanganeses dust with nitric acid. (용해도 차이를 이용한 질산망간 용액의 정제)

  • Cho Young-Keun;Song Young-Jun;Lee Gye-Seung;Shin Kang-Ho;Kim Hyung-Seok;Kim Yun-Che;Cho Dong-Sung
    • Resources Recycling
    • /
    • v.12 no.1
    • /
    • pp.33-40
    • /
    • 2003
  • Mn was extracted by using a nitric acid from the reduced ferromanganese dust and the basic experiments were taken to refine the manganese nitrate solution by means of precipitation of Ca, Mg oxalate. The dust was generated in AOD process producing a medium-low carbon ferromanganese and collected in the bag filter. Manganese oxide content in the dust was about 90% and its phase was confirmed as $Mn_3$$O_4$. $Mn_3$$O_4$ in the dust was reduced to MnO by roasting with activated charcoal. The main impurities in the extracted solution prepared by leaching the reduced dust with nitric acid were Na, K, Fe, Si, Ca, Mg etc. Among them, Fe was removed by controlling pH of the solution more than 4 and precipitating $Fe(OH)_3$, simultaneously silicious material solved in the solution was removed by co-precipitation with the ferric hydroxide. Addition of 150 g reduced dust into 4N HNO3 solution 1$\ell$ was appropriate to control the pH of the solution to pH 4. To differ greatly the solubilities of manganese oxalate and calcium or magnesium oxalate in a solution containing a high concentration of Mn, pH of 4 or less and addition of ($NH_4$)$_2$$C_2$$O_4$ in equivalent with Ca and Mg are recommended. At this time, the higher temperature was the shorter the precipitation reaction time was needed.

Concentrations and Distributions of 5 Metals in Groundwater Based on Geological Features in South Korea

  • Jeon, Sang-Ho;Park, Sunhwa;Song, Da-Hee;Hwang, Jong-yeon;Kim, Moon-su;Jo, Hun-Je;Kim, Deok-hyun;Lee, Gyeong-Mi;Kim, Ki-In;Kim, Hye-Jin;Kim, Tae-Seung;Chung, Hyen-Mi;Kim, Hyun-Koo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.5
    • /
    • pp.357-368
    • /
    • 2017
  • To establish new metal groundwater standard, 5 metals such as aluminum, chromium, iron, manganese, and selenium were evaluated by Chemical Ranking Of groundWater pollutaNts (CROWN) including possibility of exposure, toxicity, interest factor, connection standard for other media, and data reliability. 430 groundwater samples in 2013 and 2014 were collected semiannually from 110 groundwater wells and they were analyzed for selenium, manganese, iron, chromium, and aluminum. For this study, 430 groundwater samples were categorized into 3 geological distribution features, such as igneous, metamorphic, and sedimentary rock region and geological background levels were divided by pre-selection methods. For the results, the average concentrations of aluminum, chromium, iron, manganese, and selenium in 430 groundwater samples were $0.0008mg\;L^{-1}$, $0.0001mg\;L^{-1}$, $0.174mg\;L^{-1}$, $0.083mg\;L^{-1}$, and $0.0004mg\;L^{-1}$, respectively. In addition, among various geologies, average concentration of selenium was the highest in igneous rock region, average concentrations of chromium, manganese and aluminum were the greatest in sedimentary rock region, and average concentration of iron was the most high in metamorphic rock region. As a result of the geological background concentration with pre-selection method, background concentrations of selenium and aluminum in groundwater samples were the highest from sedimentary rock as $0.0010mg\;L^{-1}$ and $0.0029mg\;L^{-1}$ and background concentrations of manganese and iron in groundwater samples were the greatest from metamorphic rock as $0.460mg\;L^{-1}$ and $1.574mg\;L^{-1}$, and no chromium background concentration in groundwater samples was found from all geology.