Browse > Article
http://dx.doi.org/10.1007/s12540-018-0137-0

High-Temperature Deformation Behavior of MnS in 1215MS Steel  

Huang, Fei-Ya (Department of Materials Science and Engineering, National Cheng-Kung University)
Su, Yen-Hao Frank (China Steel Corporation)
Kuo, Jui-Chao (Department of Materials Science and Engineering, National Cheng-Kung University)
Publication Information
Metals and materials international / v.24, no.6, 2018 , pp. 1333-1345 More about this Journal
Abstract
The effect of manganese sulfide (MnS) inclusions on the machinability of free-cutting steel is based on their morphology, size and distribution. Furthermore, the plasticity of MnS is high during the hot working caused different characterization of MnS. In this study, the deformation behavior of MnS in 1215MS steel after a thermomechanical process was investigated at 1323 K. The microstructures of MnS inclusions were characterized by optical microscopy, scanning electron microscopy, energy-dispersive spectrometry, and electron backscattering diffraction (EBSD). As the thickness reduction of the inclusions increased from 10 to 70%, their average aspect ratio increased from 1.20 to 2.39. In addition, the deformability of MnS inclusions was lower than that of the matrix. The possible slip systems of A, B, C, and D plane traces were (${\bar{1}}0{\bar{1}}$)[${\bar{1}}01$], ($10{\bar{1}}$)[101], (011)[$01{\bar{1}}$], and (110)[$1{\bar{1}}0$]. Furthermore, the EBSD measurements suggested that slip planes in MnS inclusions occur on {110} planes.
Keywords
Manganese sulfide; Inclusion; Deformability; Electron backscattering diffraction (EBSD); KAM;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D.C.J. Farrugia, Ironmak. Steelmak. 37, 298 (2010)   DOI
2 A.S.M.I.H. Committee. Asm Handbook, Volume 01 - Properties and Selection: Irons, Steels, and High-Performance Alloys, vol 1 (1990), pp. 591-602
3 R. Kiessling, Nonmetallic Inclusions and Their Effects on the Properties of Ferrous Alloys (Elsevier, Oxford, 2001), pp. 6278-6283
4 C.E. Sims, F.B. Dahle, Trans. Am. Foundarymen's Ass. 46, 65 (1938)
5 T.J. Baker, J.A. Charles, J. Iron Steel Inst. 210, 702 (1972)
6 C.E. Sims, Trans. Am. Inst. Min. Metall. Eng. 215, 367 (1959)
7 T.J. Baker, J.A. Charles, J. Iron Steel Inst. 210, 680 (1972)
8 L. Luyckx, J.R. Bell, A. McLean, M. Korchynsky, Metall. Trans. 1, 3341 (1970)
9 T.J. Baker, J.A. Charles, J. Iron Steel Inst. 211, 187 (1973)
10 P.J.H. Maunder, J.A. Charles, J. Iron Steel Inst. 206, 705 (1968)
11 K.B. Gove, J.A. Charles, Met. Technol. 1, 279 (1974)   DOI
12 K.B. Gove, J.A. Charles, Met. Technol. 1, 425 (1974)   DOI
13 A. Segal, J.A. Charles, Met. Technol. 4, 177 (1977)   DOI
14 T.M. Banks, T. Gladman, Met. Technol. 6, 81 (1979)   DOI
15 H.C. Chao, L. Thomassen, L.H. Van Vlack, ASM Trans. Quart. 57, 386 (1964)
16 H.C. Chao, L.H. Van Vlack, ASM Trans. Quart. 58, 335 (1965)
17 R. Kiessling, N. Lange, Non-Metallic Inclusions in Steel, 2nd edn. (The Institute of Materials, London, 1978), pp. 97-154
18 F. Matsuno, S.I. Nishikida, H. Ikesaki, Trans. Iron Steel Jpn. 25, 989 (1985)   DOI
19 A.J. Mardinly, H. Lawrence, Texture Microstruct. 22, 127 (1993)   DOI
20 Y.T. Zhou, Y.B. Xue, D. Chen, Y.J. Wang, B. Zhang, X.L. Ma, Sci. Rep. 4, 6 (2014)
21 D.F. Lee, P.M. Martin, D.M. Kroeger, M.W. Rupich, Q. Li, G.N. Riley Jr., Supercond. Sci. Technol. 10, 702 (1997)   DOI
22 C. Igathinathane, L.O. Pordesimo, Comput. Electron. Agric. 63, 168 (2008)   DOI
23 J.A. Rice, Mathematical Statistics and Data Analysis, 3rd edn. (Cengage Learning, Boston, 2006), pp. 138-146
24 E. Limpert, W.A. Stahel, M. Abbt, Bioscience 51, 341 (2001)   DOI
25 T. Malkiewicz, S. Rudnik, J. Iron Steel Inst. 201, 33 (1963)
26 G.I. Taylor, J. Inst. Metals. 62, 307 (1938)
27 A.J. Schwartz, M. Kumar, B.L. Adams, D.P. Field, Electron Backscatter Diffraction in Materials Science, 2nd edn. (Springer, New York, 2009), pp. 251-258