• Title/Summary/Keyword: high-gain

Search Result 3,955, Processing Time 0.037 seconds

Floating Inverter Amplifiers with Enhanced Voltage Gains Employing Cross-Coupled Body Biasing

  • Jae Hoon Shim
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.12-17
    • /
    • 2024
  • Floating inverter amplifiers (FIAs) have recently garnered considerable attention owing to their high energy efficiency and inherent resilience to input common-mode voltages and process-voltage-temperature variations. Since the voltage gain of a simple FIA is low, it is typically cascaded or cascoded to achieve a higher voltage gain. However, cascading poses stability concerns in closed-loop applications, while cascoding limits the output swing. This study introduces a gain-enhanced FIA that features cross-coupled body biasing. Through simulations, it is demonstrated that the proposed FIA designed using a 28-nm complementary metal-oxide-semiconductor technology with a 1-V power supply can achieve a high voltage gain (> 90 dB) suitable for dynamic open-loop applications. The proposed FIA can also be used as a closed-loop amplifier by adjusting the amount of positive feedback due to the cross-coupled body biasing. The capability of achieving a high gain with minimum-length devices makes the proposed FIA a promising candidate for low-power, high-speed sensor interface systems.

Design of Digital Automatic Gain Controller for the High-speed Processing (고속 동작을 위한 디지털 자동 이득 제어기 설계)

  • 이봉근;이영호;강봉순
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.4
    • /
    • pp.71-76
    • /
    • 2001
  • In this paper we propose the Digital Automatic Gain Controller for IEEE 802.11a-High-speed Physical Layer in the 5 GHz Band. The input gain it estimated by calculating the energy of the training symbol that it a synchronizing signal. The renewal gain is calculated by comparing the estimated gain with the ideal gain. The renewal gain is converted into the controlled voltage for GCA to reduce or amplify the input signals. We used a piecewise-linear approximation to reduce the hardware size. The gain control is performed seven times to provide more accurate gain control. The proposed automatic gain controller is designed with VHDL and verified by using the Xilinx FPGA.

  • PDF

Novel Non-Isolated DC-DC Converter Topology with High Step-Up Voltage Gain and Low Voltage Stress Characteristics Using Single Switch and Voltage Multipliers (단일 스위치와 전압 체배 회로를 이용하는 고변압비와 낮은 전압 스트레스를 가진 새로운 비절연형 DC-DC 컨버터 토폴로지)

  • Tran, Manh Tuan;Amin, Saghir;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.83-85
    • /
    • 2019
  • The use of high voltage gain converters is essential for the distributed power generation systems with renewable energy sources such as the fuel cells and solar cells due to their low voltage characteristics. In this paper, a high voltage gain topology combining cascode Inverting Buck-Boost converter and voltage multiplier structure is introduced. In proposed converter, the input voltage is connected in series at the output, the portion of input power is directly delivered to the load which results in continuous input current. In addition, the voltage multiplier stage stacked in proper manner is not only enhance high step-up voltage gain ratio but also significantly reduce the voltage stress across all semiconductor devices and capacitors. As a result, the high current-low voltage switches can be employed for higher efficiency and lower cost. In order to show the feasibility of the proposed topology, the operation principle is presented and the steady-state characteristic is analyzed in detail. A 380W-40/380V prototype converter was built to validate the effectiveness of proposed converter.

  • PDF

Design of Wideband High Gain Trapezoidal Monopole Antenna using Backside Frequency Selective Surface (후면 주파수 선택 표면을 이용한 광대역 고이득 평면 사다리꼴 모노폴 안테나 설계)

  • Hong, Seungmo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.6
    • /
    • pp.473-478
    • /
    • 2021
  • This paper designed a wideband, high gain planar trapezoidal monopole antenna using backside frequency selective surface (FSS) according to the need for wideband and high gain antenna required in various fields such as rapidly increasing wireless communication, autonomous vehicles, 5G wireless communication and wideband applications. The proposed antenna uses a dual metallic to have a structural difference from the existing FSS. By solving the complexity of the design antenna using genetic algorithms (GA) and high frequency structural simulators (HFSS) simulations, the proposed antenna is not only produce a high efficiency but also presents a wide bandwidth of 3.52 to 5.92 GHz and a gain of 10.5 dBi over the entire bandwidth, with the highest gain of 11.8 dBi at 5.1 GHz. It has been confirmed that the gain increased 8.6 dBi as the 36% impedance bandwidth of 1.8 GHz compared to the existing antenna improved to the 50% impedance bandwidth of 2.4 GHz.

Design of an adaptive output feedback controller for robot manipulators (로보트 매니퓰레이터에 대한 출력궤환 적응제어기 설계)

  • 이강웅
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.734-738
    • /
    • 1996
  • An adaptive output feedback controller is designed for tracking control of an n-link robot manipulator with unknown load. High-gain observers with same structure as error dynamic systems are used to estimate joint velocities. The parameter adaptation is achieved by the smoothed projection algorithm. The control inputs are saturated outside a domain of interest. Simulation results on a 2-link manipulator illustrate that when the speed of the high-gain observer is sufficiently high, the proposed controller recovers the performance under state feedback control.

  • PDF

High gain and broad bandwidth antenna design using cylindrical magneto material (원통형 자성체를 이용한 고이득 및 광대역 안테나 설계)

  • Lee, Ji-Chul;Min, Kyeong-Sik
    • Journal of Navigation and Port Research
    • /
    • v.34 no.1
    • /
    • pp.21-26
    • /
    • 2010
  • This paper describes patch antenna design method of antenna high gain and broad bandwidth using cylindrical magneto material around feeding line. Strong current induction method applied combination to generate magnetic fields around feeding line for antenna high gain characteristic and principle of PIFA designed application for design of antenna broadband. In case of single CMM, gain increased 3.96 dB compare with the reference antenna gain however bandwidth characteristic not increased compare with the reference antenna. In case of dual CMM, gain improved about 10 dB compare with the reference antenna and -10 below bandwidth is 700 MHz(50 MHz~750 MHz) with this paper designed high gain characteristic.

The Novel Low-Voltage High-Gain Transresistance Amplifier Design (새로운 구조의 저전압 고이득 트랜스레지스턴스 증폭기 설계)

  • Kim, Byoung-Wook;Bang, Jun-Ho;Cho, Seong-Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.12
    • /
    • pp.2257-2261
    • /
    • 2007
  • A new CMOS transresistance amplifier for low-voltage analog integrated circuit design applications is presented. The proposed transresistance amplifier circuit based on common-source and negative feedback topology is compared with other recent reported transresistance amplifier. The proposed transresistance amplifier achieves high transresistance gain, gain-bandwidth with the same input/output impedance and the minimum supply voltage $2V_{DSAT}+V_T$. Hspice simulation using 1.8V TSMC $0.18{\mu}m$ CMOS technology was performed and achieved $59dB{\Omega}$ transresistance gain which is above the maximum about $18dB{\Omega}$ compared to transresistance gain of the reported circuit.

A 1.5 V High-Cain High-Frequency CMOS Complementary Operational Amplifier

  • Park, Kwangmin
    • Transactions on Electrical and Electronic Materials
    • /
    • v.2 no.4
    • /
    • pp.1-6
    • /
    • 2001
  • In this paper, a 1.5 V high-gain high-frequency CMOS complementary operational amplifier is presented. The input stage of op-amp is designed for supporting the constant transconductance on the Input stage by consisting of the parallel-connected rail-to-rail complementary differential pairs. And consisting of the class-AB rail-to-rail output stage using the concept of elementary shunt stage and the grounded-gate cascode compensation technique for improving the low PSRR which was a disadvantage in the general CMOS complementary input stage, the load dependence of open loop gain and the stability of op- amp on the output load are improved, and the high-gain high-frequency operation can be achieved. The designed op-amp operates perfectly on the complementary mode with the 180° phase conversion for a 1.5 V supply voltage, and shows the DC open loop gain of 84 dB, the phase margin of 65°, and the unity gain frequency of 20 MHz. In addition, the amplifier shows the 0.1 % settling time of .179 ㎲ for the positive step and 0.154 ㎲ for the negative step on the 100 mV small-signal step, respectively, and shows the total power dissipation of 8.93 mW.

  • PDF

A New Multi Level High Gain Boost DC-DC Converter with Wide Input Voltage Range and Reduced Stress Voltage Capability (넓은 입력 전압 범위와 감소된 스트레스 전압 기능성을 갖는 새로운 승압형 멀티레벨 DC-DC 컨버터)

  • Anvar, Ibadullaev;Park, Sung-Jun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.2
    • /
    • pp.133-141
    • /
    • 2020
  • The use of high-gain-voltage step-up converters for distributed power generation systems is being popularized because of the need for new energy generation and power conversion technologies. In this study, a new constructed high-gain-boost DC-DC converter was proposed to coordinate low voltage output DC sources, such as PV or fuel cell systems, with high DC bus (380 V) lines. Compared with traditional boost DC-DC converters, the proposed converter can create higher gain and has wider input voltage range and lower voltage stress for power semiconductors and passive elements. Moreover, the proposed topology produces multilevel DC voltage output, which is the main advantage of the proposed topology. Steady-state analysis in continuous conduction mode of the proposed converter is discussed in detail. The practicability of the proposed DC-DC converter is presented by experimental results with a 300 W prototype converter.

Design of a Neuro Observer for Reduction of Estimate Error (추정오차 저감을 위한 뉴로 관측기 설계)

  • Nam Moon-Hyon;Yoon Kwang-Ho
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.5
    • /
    • pp.285-290
    • /
    • 2005
  • The state observer is being used widely because it has the advantage of the guarantee of reliability on financial problem, over heating, and physical shock. However, an Luenberger observer and a Sliding observer have such problems that an experimenter needs to know dynamics and parameters of the system. And also, the high gain observer has such a problem that it has transient state at the beginning of the observation. In this paper, the Neuro observer is proposed to improve these problems. The proposed Neuro observer complement a problem that occur from increase of gain of High-gain observer in proportion to the square number of observable state variables. And also, the proposed Neuro observer can tune the gain obtained by differentiating observational error at transient state automatically by using the backpropagation training method to stabilize the observational speed. To prove a performance of the proposed observer, it is simulated that the comparison between the state estimate performance of the proposed observer and that of Sliding, High gain observer is made by using a sinusoidal input to the observer which consists of four layers in stable 2nd order system.