• Title/Summary/Keyword: high-elasticity

Search Result 675, Processing Time 0.028 seconds

Workability and compressive behavior of PVA-ECC with CNTs

  • Lee, Dongmin;Lee, Seong-Cheol;Yoo, Sung-Won
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.311-320
    • /
    • 2022
  • TBM concrete segment requires a higher level of material properties compared to general concrete structures due to difficulties in maintenance and uncertainty in ground conditions. In this regard, recently, as one of the methods to achieve enhancement effect on concrete strength, many researchers have been focusing on adding CNTs to concrete mixture. However, even CNTs do not compensate the weakness that concrete exhibits brittle behavior after cracking. Separately, over the past few decades, a number of studies have been conducted on fiber reinforced concrete which exhibits ductile behavior due to fibers bridging cracks. However, only limited studies have been conducted to employ the advantages of the both materials together. In this study, an experimental program has been conducted to investigate the effect of CNTs on the workability and the compressive behavior of PVA-ECC which exhibits ductile tensile behavior with well-distributed cracks even without a conventional rebar. In addition to the compression test, SEM analysis has been also conducted for detailed investigation in the microstructure. The variable was the CNTs mix ratio, which were set to 0.00, 0.25, and 0.50 wt.% to the binding materials. It was observed though the test results that as the CNTs mix ratio increased, the workability considerably decreased with the reduced slump and slump flow. From the compression test results, it was also investigated that the compressive behavior was improved since the compressive strength, the strain corresponding to the compressive strength, and the modulus of elasticity increased with an increase of CNTs mix ratio. The contents of this paper will be useful for relevant research areas such as fiber reinforced concrete with CNTs which might be applied for high performance TMB concrete segments.

Buckling resistance behavior of WGJ420 fire-resistant weathering steel columns under fire

  • Yiran Wu;Xianglin Yu;Yongjiu Shi;Yonglei Xu;Huiyong Ban
    • Steel and Composite Structures
    • /
    • v.47 no.2
    • /
    • pp.269-287
    • /
    • 2023
  • The WGJ420 fire-resistant weathering (FRW) steel is developed and manufactured with standard yield strength of 420 MPa at room temperature, which is expected to significantly enhance the performance of steel structures with excellent fire and corrosion resistances, strong seismic capacity, high strength and ductility, good resilience and robustness. In this paper, the mechanical properties of FRW steel plates and buckling behavior of columns are investigated through tests at elevated temperatures. The stress-strain curves, mechanical properties of FRW steel such as modulus of elasticity, proof strength, tensile strength, as well as corresponding reduction factors are obtained and discussed. The recommended constitutive model based on the Ramberg-Osgood relationship, as well as the relevant formulas for mechanical properties are proposed, which provide fundamental mechanical parameters and references. A total of 12 FRW steel welded I-section columns with different slenderness ratios and buckling load ratios are tested under standard fire to understand the global buckling behavior in-depth. The influences of boundary conditions on the buckling failure modes as well as the critical temperatures are also investigated. In addition, the temperature distributions at different sections/locations of the columns are obtained. It is found that the buckling deformation curve can be divided into four stages: initial expansion stage, stable stage, compression stage and failure stage. The fire test results concluded that the residual buckling capacities of FRW steel columns are substantially higher than the conventional steel columns at elevated temperatures. Furthermore, the numerical results show good agreement with the fire test results in terms of the critical temperature and maximum axial elongation. Finally, the critical temperatures between the numerical results and various code/standard curves (GB 51249, Eurocode 3, AS 4100, BS 5950 and AISC) are compared and verified both in the buckling resistance domain and in the temperature domain. It is demonstrated that the FRW steel columns have sufficient safety redundancy for fire resistance when they are designed according to current codes or standards.

AN ANALYSIS ON THE LABOR/CAPITAL PRODUCTIVITY OF THE CONSTRUCTION INDUSTRY

  • Minsoo Choi;Jinu Kim;Moohan Kim
    • International conference on construction engineering and project management
    • /
    • 2005.10a
    • /
    • pp.968-973
    • /
    • 2005
  • The purpose of this study is to clarify the reality of labor and capital productivity in the construction industry through an industry-level approach and to analyze the relationship between labor and capital productivity using a Cobb-Douglas production function. According to the research results, the construction industry has shown a very high capital productivity, while labor productivity has kept up a low level during the 1980s and 1990s. The reason was because of the lack of skillful construction workers and the decrease of capital. Meanwhile, the construction productivity has greatly increased since 2000 when there was no change in wages. This was because of a large inflow of low-wage foreign workers while the amount of value added has dramatically increased due to the liberalized sale price of apartment buildings. According to the analysis by the Cobb-Douglas production function, the elasticity coefficient of V/L to K/L in the construction industry had decreased from 1.1663 in the 1st period(1971-1988) to 0.4465 in the 2nd period(1989-1997), and to 0.1664 in the 3rd period(1998-2003). Such a result means that the allocation of labor has gradually increased while the allocation of capital has decreased. Moreover there was a big increase in allocation of labor after 1998 due to the excessive deterioration of capital. In conclusion, in order to raise the construction productivity and to avoid labor-intensive production methods, investment for capital should be more increased. In particular, new machinery and equipment that can actually substitute human labor in construction sites should be more developed and applied to construction sites.

  • PDF

Service and Ultimate Load Behavior of Bridge Deck Reinforced with GFRP Rebars (GFRP 보강근으로 보강된 교량 바닥판의 성능과 사용성에 관한 실험연구)

  • Yu, Young Jun;Park, Young Hwan;Park, Ji Sun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5A
    • /
    • pp.719-727
    • /
    • 2008
  • The tensile and bond performance of GFRP rebar are different from those of conventional steel reinforcement. It requires some studies on concrete members reinforced with GFRP reinforcing bars to apply it to concrete structures. GFRP has some advantages such as high specific strength, low weight, non-corrosive nature, and disadvantage of larger deflection due to the lower modulus of elasticity than that of steel. Bridge deck is a preferred structure to apply FRP rebars due to the increase of flexural capacity by arching action. This paper focuses on the behavior of concrete bridge deck reinforced with newly developed GFRP rebars. A total of three real size bridge deck specimens were made and tested. Main variables are the type of reinforcing bar and reinforcement ratio. Static test was performed with the load of DB-24 level until failure. Test results were compared and analyzed with ultimate load, deflection behavior, crack pattern and width.

Development of Hair Keratin Protein to Accelerate Oral Mucosal Regeneration

  • So-Yeon Kim
    • Journal of dental hygiene science
    • /
    • v.23 no.4
    • /
    • pp.369-377
    • /
    • 2023
  • Background: In this study, we investigated the potential use of keratin for oral tissue regeneration. Keratin is well-known for its effectiveness in skin regeneration by promoting keratinization and enhancing the elasticity and activity of fibroblasts. Because of its structural stability, high storability, biocompatibility, and safety in humans, existing research has predominantly focused on its role in skin wound healing. Herein, we propose using keratin proteins as biocompatible materials for dental applications. Methods: To assess the suitability of alpha-keratin protein as a substrate for cell culture, keratin was extracted from human hair via PEGylation. Viabilities of primary human gingival fibroblasts (HGFs) and human oral keratinocytes (HOKs) were assessed. Fluorescence immunostaining and migration assays were conducted using a fluorescence microscope and confocal laser scanning microscope. Wound healing and migration assays were performed using automated software to analyze the experimental readout and gap closure rate. Results: We confirmed the extraction of alpha-keratin and formation of the PEG-g-keratin complex. Treatment of HGFs with keratin protein at a concentration of 5 mg/ml promoted proliferation and maintained cell viability in the test group compared to the control group. HOKs treated with 5 mg/ml keratin exhibited a slight decrease in cell proliferation and activity after 48 hours compared to the untreated group, followed by an increase after 72 hours. Wound healing and migration assays revealed rapid closure of the area covered by HOKs over time following keratin treatment. Additionally, HOKs exhibited changes in cell morphology and increased the expression of the mesenchymal marker vimentin. Conclusion: Our study demonstrated the potential of hair keratin for soft tissue regeneration, with potential future applications in clinical settings for wound healing.

The role of internal architecture in producing high-strength 3D printed cobalt-chromium objects

  • Abdullah Jasim Mohammed;Ahmed Asim Al-Ali
    • The Journal of Advanced Prosthodontics
    • /
    • v.16 no.2
    • /
    • pp.91-104
    • /
    • 2024
  • PURPOSE. The objectives of the current study were to estimate the influence of self-reinforced hollow structures with a graded density on the dimensional accuracy, weight, and mechanical properties of Co-Cr objects printed with the direct metal laser sintering (DMLS) technique. MATERIALS AND METHODS. Sixty-five dog-bone samples were manufactured to evaluate the dimensional accuracy of printing, weight, and tensile properties of DMLS printed Co-Cr. They were divided into Group 1 (control) (n = 5), Group 2, 3, and 4 with incorporated hollow structures based on (spherical, elliptical, and diamond) shapes; they were subdivided into subgroups (n = 5) according to the volumetric reduction (10%, 15%, 20% and 25%). Radiographic imaging and microscopic analysis of the fractographs were conducted to validate the created geometries; the dimensional accuracy, weight, yield tensile strength, and modulus of elasticity were calculated. The data were estimated by one-way ANOVA and Duncan's tests at P < .05. RESULTS. The accuracy test showed an insignificant difference in the x, y, z directions in all printed groups. The weight was significantly reduced proportionally to the reduced volume fraction. The yield strength and elastic modulus of the control group and Group 2 at 10% volume reduction were comparable and significantly higher than the other subgroups. CONCLUSION. The printing accuracy was not affected by the presence or type of the hollow geometry. The weight of Group 2 at 10% reduction was significantly lower than that of the control group. The yield strength and elastic modulus of the Group 2 at a 10% reduction showed means equivalent to the compact objects and were significantly higher than other subgroups.

Sustainable SCC with high volume recycled concrete aggregates and SCMs for improved mechanical and environmental performances

  • Zhanggen Guo;Ling Zhou;Qiansen Sun;Zhiwei Gao;Qinglong Miao;Haixia Ding
    • Advances in concrete construction
    • /
    • v.16 no.6
    • /
    • pp.303-316
    • /
    • 2023
  • Using industrial wastes and construction and demolition (C&D) wastes is potentially advantageous for concrete production in terms of sustainability improvement. In this paper, a sustainable Self-Compacting Concrete (SCC) made with industrial wastes and C&D wastes was proposed by considerably replacing natural counterparts with recycled coarse aggregates (RCAs) and supplementary cementitious materials (SCMs) (i.e., Fly ash (FA), ground granulated blast furnace slag (GGBS) and silica fume (SF)). A total of 12 SCC mixes with various RCAs and different combination SCMs were prepared, which comprise binary, ternary and quaternary mixes. The mechanical properties in terms of compressive strength and static elasticity modulus of recycled aggregates (RA-SCC) mixes were determined and analyzed. Microstructural study was implemented to analyze the reason of improvement on mechanical properties. By means of life cycle assessment (LCA) method, the environmental impacts of RA-SCC with various RCAs and SCMs were quantified, analyzed and compared in the system boundary of "cradle-to-gate". In addition, the comparison of LCA results with respect to mechanical properties was conducted. The results demonstrate that the addition of proposed combination SCMs leads to significant improvement in mechanical properties of quaternary RA-SCC mixes with FA, GGBS and SF. Furthermore, quaternary RA-SCC mixes emit lowest environmental burdens without compromising mechanical properties. Thus, using the combination of FA, GGBS and SF as cement substitution to manufacture RA-SCC significantly improves the sustainability of SCC by minimizing the depletion of cement and non-renewable natural resources.

Technical Performance of Two-Dimensional Shear Wave Elastography for Measuring Liver Stiffness: A Systematic Review and Meta-Analysis

  • Dong Wook Kim;Chong Hyun Suh;Kyung Won Kim;Junhee Pyo;Chan Park;Seung Chai Jung
    • Korean Journal of Radiology
    • /
    • v.20 no.6
    • /
    • pp.880-893
    • /
    • 2019
  • Objective: To assess the technical performance of two-dimensional shear wave elastography (2D-SWE) for measuring liver stiffness. Materials and Methods: The Ovid-MEDLINE and EMBASE databases were searched for studies reporting the technical performance of 2D-SWE, including concerns with technical failures, unreliable measurements, interobserver reliability, and/or intraobserver reliability, published until June 30, 2018. The pooled proportion of technical failure and unreliable measurements was calculated using meta-analytic pooling via the random-effects model and inverse variance method for calculating weights. Subgroup analyses were performed to explore potential causes of heterogeneity. The pooled intraclass correlation coefficients (ICCs) for interobserver and intraobserver reliability were calculated using the Hedges-Olkin method with Fisher's Z transformation of the correlation coefficient. Results: The search yielded 34 articles. From 20 2D-SWE studies including 6196 patients, the pooled proportion of technical failure was 2.3% (95% confidence interval [CI], 1.3-3.9%). The pooled proportion of unreliable measurements from 20 studies including 6961 patients was 7.5% (95% CI, 4.7-11.7%). In the subgroup analyses, studies conducting more than three measurements showed fewer unreliable measurements than did those with three measurements or less, but no intergroup difference was found in technical failure. The pooled ICCs for interobserver reliability (from 10 studies including 517 patients) and intraobserver reliability (from 7 studies including 679 patients) were 0.87 (95% CI, 0.82-0.90) and 0.93 (95% CI, 0.89-0.95), respectively, suggesting good to excellent reliability. Conclusion: 2D-SWE shows good technical performance for assessing liver stiffness, with high technical success and reliability. Future studies should establish the quality criteria and optimal number of measurements.

A Study on Activation of Hair SUKI Alternative Therapy (헤어SUKI 대체요법 활성화를 위한 연구)

  • Yun-Jung Lee;Seong-Gyun Hong
    • Journal of the Health Care and Life Science
    • /
    • v.9 no.2
    • /
    • pp.373-381
    • /
    • 2021
  • The purpose of this study was to examine the correlation between the effectiveness of SUKI alternative therapy and scalp massage, and to contribute to the application and activation of hair SUKI alternative therapy. The research method was first to examine the understanding of SUKI alternative therapy through the concept of SUKI alternative therapy, the characteristics of SUKI alternative therapy, and points to be aware of during SUKI alternative therapy. The correlation between SUKI alternative therapy and scalp massage was investigated by reviewing research and others. As a result, SUKI replacement therapy had significant effects such as stress, depression, high blood pressure, muscle pain, skin wrinkles and elasticity. has been shown to affect treatment. Therefore, it is expected that SUKI replacement therapy can be applied to hair SUKI replacement therapy to improve the health and quality of life of modern people.

Enhancing mechanical performance of steel-tube-encased HSC composite walls: Experimental investigation and analytical modeling

  • ZY Chen;Ruei-Yuan Wang;Yahui Meng;Huakun Wu;Lai B;Timothy Chen
    • Steel and Composite Structures
    • /
    • v.52 no.6
    • /
    • pp.647-656
    • /
    • 2024
  • This paper discusses the study of concrete composite walls of algorithmic modeling, in which steel tubes are embedded. The load-bearing capacity of STHC composite walls increases with the increase of axial load coefficient, but its ductility decreases. The load-bearing capacity can be improved by increasing the strength of the steel pipes; however, the elasticity of STHC composite walls was found to be slightly reduced. As the shear stress coefficient increases, the load-bearing capacity of STHC composite walls decreases significantly, while the deformation resistance increases. By analyzing actual cases, we demonstrate the effectiveness of the research results in real situations and enhance the persuasiveness of the conclusions. The research results can provide a basis for future research, inspire more explorations on seismic design and construction, and further advance the development of this field. Emphasize the importance of research results, promote interdisciplinary cooperation in the fields of structural engineering, earthquake engineering, and materials science, and improve overall seismic resistance. The emphasis on these aspects will help highlight the practical impact of the research results, further strengthen the conclusions, and promote progress in the design and construction of earthquake-resistant structures. The goals of this work are access to adequate, safe and affordable housing and basic services, promotion of inclusive and sustainable urbanization and participation, implementation of sustainable and disaster-resilient architecture, sustainable planning and management of human settlements. Simulation results of linear and nonlinear structures show that this method can detect structural parameters and their changes due to damage and unknown disturbances. Therefore, it is believed that with the further development of fuzzy neural network artificial intelligence theory, this goal will be achieved in the near future.