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INTRODUCTION

Ultrasound (US) elastography is a non-invasive tool used 
in chronic liver disease for staging liver fibrosis or predicting 
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portal hypertension. Among several US elastography 
techniques, two-dimensional shear wave elastography 
(2D-SWE) is the latest method using an acoustic radiation 
force impulse (ARFI) to cause liver-tissue deformation 

Korean J Radiol 2019;20(6):880-893

eISSN 2005-8330
https://doi.org/10.3348/kjr.2018.0812

Original Article | Gastrointestinal Imaging

http://crossmark.crossref.org/dialog/?doi=10.3348/kjr.2018.0812&domain=pdf&date_stamp=2019-05-23


881

Technical Performance of 2D Shear Wave Elastography

https://doi.org/10.3348/kjr.2018.0812kjronline.org

and eventually generate a shear wave. It provides a 2D 
quantitative map of liver stiffness values over a large region 
of interest (ROI) by placing the ARFI focus at multiple 
sequential locations and capturing the generated shear 
waves. Because 2D-SWE involves real-time imaging, both the 
depth and size of sampling areas can be chosen manually at 
desired locations with no mass, large vessels, or artifacts. 
2D-SWE has been integrated into most clinical US systems 
with the same probes as that used in traditional US (1).

Owing to its advantages, 2D-SWE helps assess the stability 
of measuring and quantifying an average stiffness value in 
a large ROI for higher reliability (2). However, because of 
its relative novelty, 2D-SWE has not yet been validated and 
some aspects remain incompletely clarified (3). Validating 
a diagnostic device for clinical use involves two main 
processes: 1) diagnostic accuracy—the evidentiary process 
of linking a biomarker with clinical endpoints and biologic 
processes and 2) technical performance—assessment of 
technical success/failure and measurement variability (4).

Thus far, most clinical validation attempts have focused 
on the good diagnostic accuracy of 2D-SWE for the degree 
of liver fibrosis (1, 2, 5, 6). Nevertheless, its technical 
performance also needs assessment. Although 2D-SWE 
systems from different manufacturers have custom built-in 
indicators for better measurement quality and stability, the 
evidence supporting them are limited (7). Indeed, previous 
studies evaluating the technical performance of 2D-SWE 
were generally small-scale studies with low-level evidence 
(8-41). To increase the level of evidence and arrive at 
more evidence-based results, sufficient evidence should be 
accumulated and summarized. 

Therefore, we conducted this systematic review and meta-
analysis to evaluate the technical performance of 2D-SWE 
for measuring liver stiffness.

MATERIALS AND METHODS

Institutional Review Board approval was not required 
because of the nature of our study, which was a systemic 
review and meta-analysis. Our systematic review and 
meta-analysis followed the Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses guidelines (42).

Literature Search Strategy
We conducted an electronic literature search to identify 

suitable studies from the Ovid-MEDLINE (U.S. National 
Library of Medicine) and EMBASE (Elsevier) databases until 

June 30, 2018 (Supplementary Materials in the online-only 
Data Supplement).

Eligibility Criteria and Study Selection
We tried to evaluate the technical performance of 2D-SWE 

for measuring liver stiffness. Thus, we included studies and 
study subsets that evaluated any of the following outcomes 
by using 2D-SWE for measuring liver stiffness: 1) technical 
failure; 2) unreliable measurements; 3) interobserver 
reliability; and 4) intraobserver reliability. 

Technical failure was the inability to obtain an adequate 
signal for all acquisitions, which was adopted in all studies 
consistently. As unreliable measurements were randomly 
defined across studies without consensus, we used the 
slightly different definitions of unreliable results employed 
in each of the included studies. Regarding measurement 
reliability, we included studies comparing the stiffness 
between different observers (interobserver reliability) 
and between different sessions by the same observer 
(intraobserver reliability).

The exclusion criteria were as follows: 1) studies 
reporting insufficient data for outcomes (i.e., an ambiguous 
definition of technical failure); 2) studies including 
pediatric populations; 3) studies using other elastography 
modalities (i.e., transient elastography [TE] or point 
shear-wave elastography); 4) partially overlapping patient 
cohorts; 5) case reports or series including less than 10 
patients; and 6) reviews, guidelines, consensus statements, 
editorials, letters, comments, or conference abstracts.

Literature search and study selection were performed by 
one reviewer and double checked by other two reviewers.

Data Extraction
Data pertaining to the following parameters 

were extracted using a standardized form: 1) study 
characteristics: authors, institution, duration of patient 
recruitment, year of publication, and study design 
(prospective vs. retrospective); 2) patient characteristics: 
number of patients, male-to-female ratio, mean age, age 
range, and etiology; 3) technical characteristics of 2D-SWE: 
device, manufacturer, transducer, measurement number, 
representative value (mean or median), and number of 
observers; and 4) study outcomes: proportion of technical 
failure, proportion of unreliable measurements, and 
intraclass correlation coefficient (ICC) for interobserver and 
intraobserver reliability, if any. Additionally, possible factors 
influencing technical failure or unreliable measurements in 
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each eligible study were evaluated.
The data extraction was performed by two reviewers 

independently. Any disagreements were resolved with a 3rd 
reviewer. There was no major controversial issue.

Quality Assessment
The methodological quality of the selected studies was 

assessed by one reviewers using tailored questionnaires and 
criteria provided by the Quality Assessment of Diagnostic 
Accuracy Studies-2 (QUADAS-2) (43).

Data Synthesis and Analysis
This meta-analysis assessed four main indices: 1) pooled 

proportion of technical failure; 2) pooled proportion of 
unreliable measurements; 3) pooled ICC for interobserver 
reliability; and 4) pooled ICC for intraobserver reliability. 
If the indices were obtained by two or more observers, 
especially for the evaluation of intraobserver reliability, 
representative data (i.e., mean values of all observers’ 
outcomes) were chosen for analysis. Otherwise, data from 
the observer with the highest value were used.

The pooled proportions of technical failure and unreliable 
measurements were calculated using meta-analytic 
pooling via the inverse variance method for calculating 
weights (44-46). Random-effects meta-analysis of single 
proportions was used to obtain an overall proportion. Logit 
transformation of proportion was performed. The Clopper-
Pearson interval for individual studies was used to obtain 
the confidence intervals (CIs), and a continuity correction 
of 0.5 was performed in studies with zero cell frequencies. 
Heterogeneity among studies was determined using 1) 
Cochran’s Q-test for summary estimates with p < 0.05 
indicating heterogeneity and 2) the Higgins inconsistency 
index (I2), which indicates the percentage of variance in 
a meta-analysis (a rough guide to interpretation: 0–40%, 
heterogeneity might not be important; 30–60%, moderate 
heterogeneity may be present; 50–90% substantial 
heterogeneity may be present; and 75–100%, considerable 
heterogeneity may be present) (47, 48). Publication bias 
was assessed using funnel plots visually and Egger’s test 
with p < 0.10 indicating significant bias (49). Publication-
bias-adjusted pooled estimate was also calculated using 
the trim-and-fill method (50). A sensitivity analysis was 
conducted using a leave-one-out analysis to identify 
outliers and evaluate the influence of a single study. 
Moreover, subgroup analyses were performed on the 
following covariates: 1) measurement numbers (≤ 3 vs. > 3) 

(7); 2) manufacturer; and 3) etiology (chronic liver disease 
vs. liver cirrhosis). Specifically, from some of the eligible 
studies that included both healthy and diseased cohorts 
(25, 29, 36, 38), we extracted more detailed outcomes of 
patients with chronic liver disease or liver cirrhosis. Thus, 
for subgroup analyses on different etiologies (chronic liver 
disease vs. liver cirrhosis), we also included these subgroup 
data.

To calculate the pooled ICC for interobserver and 
intraobserver reliability, we used the Hedges-Olkin method 
with Fisher’s Z transformation of the correlation coefficient 
(51). With this method, the ICC was converted to Z 
transforms; thereafter, a mean transformed correlation 
weighted by sample size was calculated. Once a 95% CI 
was obtained for the pooled Z score, it was transformed 
back to a 95% CI for the pooled ICC with both fixed- 
and random-effects models. The value of ICC can be 
interpreted as follows: < 0.50, poor; 0.50–0.74, moderate; 
0.75–0.89, good; and 0.90–1.00, excellent reliability (52). 
Heterogeneity and publication bias were also assessed in a 
similar manner to the pooled proportion of technical failure 
and unreliable measurement.

All statistical analyses were performed by two reviewers 
(with 2 and 6 years of experience, respectively, in 
performing systematic reviews and meta-analyses) using the 
“metafor” and “meta” packages in R software version 3.5.1 
(R Foundation for Statistical Computing).

RESULTS

Literature Search and Quality Assessment
Figure 1 illustrates the flow of literature screening 

and selection. Finally, 34 articles were included in our 
systematic review and meta-analysis (8-41). All studies 
satisfied more than half the tailored questionnaires of 
QUADAS-2 tool (Supplementary Materials in the online-only 
Data Supplement).

Characteristics of the Included Studies 
The detailed characteristics of the included studies are 

summarized in Tables 1 and 2. Twenty-eight of the 34 
studies were prospective (8-15, 17-24, 26-29, 31, 33, 34, 
36, 37, 39-41) and four were retrospective (16, 30, 32, 38). 
The mean ages of subjects in the included studies ranged 
from 27 to 60 years old. The study populations ranged from 
healthy cohorts to patients with chronic liver disease/liver 
cirrhosis from various causes.
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The US device used in 28 studies was Aixplorer (Supersonic 
Imagine, Strasbourg, France) (9-13, 15-20, 23, 25-29, 31-
41). Either LOGIQ E9 (GE Healthcare, Chicago, IL, USA) (8, 
14, 22, 30) or Aplio 500 (Canon Medical Systems, Otawara, 
Japan) (21, 24) was used in the remaining 6 studies. 

Regarding the methods of liver-stiffness measurements, 
23 studies performed more than three measurements (8, 
10, 12, 14-22, 24, 25, 30, 31, 35-41), whereas 9 studies 
performed three (9, 11, 13, 23, 26, 29, 32, 33) or less 
(28) measurements. Thirteen studies used “mean” as a 
representative value of liver stiffness (9, 10, 13-16, 19, 
21, 23, 25, 26, 33, 40), 17 studies used “median” (8, 11, 
12, 17, 18, 20, 22, 24, 29, 31, 32, 34, 36-39, 41), and 2 
studies used both values (30, 35).

Technical Failure
We obtained the proportion of technical failure of 2D-SWE 

in 20 studies including 6196 patients (9-13, 16, 22, 24-
29, 32, 34, 36, 38-41). Under the random-effects model, 
the pooled proportion of technical failure was 2.3% (95% 
CI, 1.3–3.9%) (Fig. 2). Significant heterogeneity was noted 
in Cochran’s Q-test (p < 0.01) and Higgins I2 (90%). The 

funnel plot (Supplementary Fig. 1A in the online-only 
Data Supplement) and Egger’s test (p < 0.01) revealed 
substantial publication bias. After using the trim-and-fill 
method (Supplementary Fig. 1B in the online-only Data 
Supplement), the publication-bias-adjusted pooled estimate 
was 2.8% (95% CI, 1.7–4.7%), suggesting the robustness 
of the result against any publication bias. No outlier was 
found in the sensitivity analysis.

The results of subgroup analyses for the proportion of 
technical failure are summarized in Table 3. No significant 
difference in technical failure proportion was observed 
between the studies with three or less measurements and 
those with more than three measurements. Ten studies 
originally targeted patients with chronic liver disease (9-13, 
16, 27, 28, 40, 41). Additionally, we could extract separate 
data on patients with chronic liver disease from 4 studies 
(25, 29, 36, 38). Therefore, we could recalculate the pooled 
proportion of technical failure in patients with chronic liver 
disease from 14 studies (2.4%; 95% CI, 1.2–4.8%) (9-13, 
16, 25, 27-29, 36, 38, 40, 41). Likewise, we recalculated 
the pooled proportion in patients with liver cirrhosis from 3 
studies (6.8%; 95% CI, 2.5–17.0%) (10, 13, 38).

Records identified through databases
searching (n = 800):

OVID-MEDLINE (n = 279), EMBASE (n = 521)

Records after duplicates removed (n = 613)

Records screened (n = 613)

Full-text articles assessed for eligibility (n = 131)

Studies included in qualitative synthesis (n = 34)

Studies included in quantitative synthesis (n = 34)

Additional records identified
through bibliography review (n = 5)

Records excluded (n = 482)
Not in field of interest (184)
Letters/editorials/conference abstracts (235)
Articles in press (12)
Review articles (32)
Not eligible population (19)

Records excluded (n = 97)
Not in field of interest (71)
Case report (1)
Editorial (1)
Other language article (1)
Not eligible population (2)
Partially overlapping patient cohorts (3)
Not sufficient data for outcome (18)
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Fig. 1. Flow diagram of study selection.
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Table 1. Demographic Characteristics of Included Studies

Study 

(Year of Publication)
Institution Duration

Study 

Design

Patients

(n)

Mean Age

(Range, Years)

Male:

Female
Patient Population

Bende et al.

  (2017) (8)

Victor Babeş University of 

  Medicine and Pharmacy,

  Romania

NA Prospective 331 55 (19–85) 127:204
Chronic liver disease + 

  Healthy cohorts

Bota et al.

  (2015) (9)

Medical University of Vienna, 

  Austria
NA Prospective 127 52.7 64:63 Chronic liver disease

Cassinotto et al.

  (2015) (10)
Hôpital Haut-Lévêque, France 2012.11–2014.3 Prospective 401 60 291:110 Liver cirrhosis

Cassinotto et al.

  (2016) (11)

University Hospital of Angers 

  & University Hospital of 

  Bordeaux, France

2011.11–2015.2 Prospective 291 56.7 (18–80) 172:119
Non-alcoholic fatty liver 

  disease

Deffieux et al.

  (2015) (12)
Cochin Hospital, France 2011.2–2012.11 Prospective 120 46.2 (18–80) 86:34 Chronic liver disease

Elkrief et al.

  (2018) (13)
Hôpital Beaujon-AP-HP, France 2012.1–2016.12 Prospective 209 NA NA Cirrhosis

Fang et al.

  (2017) (14)
King’s College Hospital, UK 2014.6–2014.7 Prospective 11 32 5:6 Healthy cohorts

Ferraioli et al.

  (2012) (15)

IRCCS San Matteo Hospital 

  Foundation, Italy
NA Prospective 42 34.8 13:29 Healthy cohorts

Ferraioli et al.

  (2012) (16)

IRCCS San Matteo Hospital 

  Foundation, Italy
2010.6–2012.1 Retrospective 121 44.8 (19–76) 87:34 Hepatitis C

Gerber et al.

  (2015) (17)

J. W. Goethe University 

  Hospital, Germany
2012.10–2013.10 Prospective 120 52 (18–76) 61:59 Chronic hepatitis

Guibal et al.

  (2016) (18)
Lyon Hospital, France 2010.9–2012.5 Prospective 170 NA NA

Scheduled to undergo 

  liver biopsy

Hudson et al.

  (2013) (19)

Sunnybrook Health Sciences 

  Centre, Canada
NA Prospective 15 27 (21–35) 10:5 Healthy cohorts

Kim et al.

  (2015) (20)

Hanyang University Guri 

  Hospital, Korea
2011.8–2012.2 Prospective 197 NA NA

Methotrexate-treated 

  patients with rheumatoid 

  arthritis

Lee et al.

  (2017) (21)

Chung-Ang University Hospital,

  Korea
2015.12–2016.4 Prospective 115 50.0 (19–76) 75:40 Chronic hepatitis

Lee et al.

  (2017) (22)

Seoul National University 

  Hospital, Korea
2016.3–2016.10 Prospective 120 52.2 (19–78) 77:43

Scheduled to undergo 

  liver biopsy (interobserver 

  correlation: healthy cohorts 

  [n = 20])

Leung et al.

  (2013) (23)

Prince of Wales Hospital, 

  China
2011.4–2012.3 Prospective 21 NA NA

Hepatitis B + healthy 

  cohorts

Maruyama et al.

  (2016) (24)
Chiba University, Japan 2014.11–2015.12 Prospective 95 NA NA

Chronic hepatitis (including 

  liver cirrhosis) + healthy 

  cohorts

Mulazzani et al.

  (2017) (25)
University of Bologna, Italy NA NA 113 NA NA

Chronic liver disease + 

  healthy cohorts

Pellot-Barakat et al.

  (2015) (26)

Universite Pierre et Marie Curie, 

  France
2012.2–2013.12 Prospective 31 56 19:12 Nonspecific

Poynard et al.

  (2013) (27)

Groupe Hospitalier Pitié 

  Salpêtrière Hospital, France
2012.1–2012.4 Prospective 422 NA NA Chronic liver disease

Poynard et al.

  (2016) (28)

Groupe Hospitalier Pitié 

  Salpêtrière Hospital, France
2013.10–2015.4 Prospective 2251 NA NA Chronic liver disease

Procopet et al.

  (2015) (29)

Hospital Clínic de Barcelona, 

  Spain
2014.2–2014.6 Prospective 85 NA NA

Chronic liver disease + 

  healthy cohorts
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Unreliable Measurements
From 20 studies including 6961 patients (8, 9, 11, 13, 

17, 18, 20-22, 24, 27-29, 31, 33, 35, 37, 38, 40, 41), 
the pooled proportion of unreliable measurement was 
7.5% (95% CI, 4.7–11.7%) (Fig. 3). The definition of 
unreliable measurements varied across the studies (Table 4). 
Significant heterogeneity was found in Cochran’s Q-test (p 
< 0.01) and Higgins I2 (96%). The funnel plot and Egger’s 
test revealed no significant publication bias (p = 0.19) 
(Supplementary Fig. 2 in the online-only Data Supplement). 
One study was an outlier in the sensitivity analysis (13), 
but the summary proportion was still robust (6.8%; 95% CI, 
5.0–9.3%) after removing it.

The subgroup analyses for the proportion of unreliable 
measurements are summarized in Table 5. Notably, studies 
conducting more than three measurements had fewer 
unreliable measurements than did those conducting three 
or less measurements. From 12 studies (9, 11, 13, 17, 21, 
27-29, 35, 38, 40, 41), including 2 (29, 38) enabling the 

extraction of separate data on patients with chronic liver 
disease, the pooled proportion in patients with chronic liver 
disease was 6.3% (95% CI, 3.0–12.9%).

Interobserver and Intraobserver Reliability
The interobserver reliability of 2D-SWE was obtained 

from 12 studies (10, 12, 14, 15, 18-23, 36, 39). The study 
of Yoon et al. (39) was excluded because it potentially 
shared the population with another (20). Moreover, unlike 
other studies reporting the result using an ICC parameter, 
the study of Deffieux et al. (12) used Pearson’s correlation 
coefficient (r = 0.87). Finally, we conducted a meta-analysis 
of 10 studies including 517 patients (10, 14, 15, 18-
23, 36), and the pooled interobserver reliability was 0.87 
(95% CI, 0.82–0.90), suggesting good reliability (Fig. 4A). 
Significant heterogeneity was noted in Cochran’s Q-test (p = 
0.01) and Higgins I2 (58%). The funnel plot (Supplementary 
Fig. 3A in the online-only Data Supplement) and Egger’s 
test (p = 0.08) revealed substantial publication bias, but 

Table 1. Demographic Characteristics of Included Studies (Continued)

Study 

(Year of Publication)
Institution Duration

Study 

Design

Patients

(n)

Mean Age

(Range, Years)

Male:

Female
Patient Population

Sigrist et al.

  (2017) (30)
Stanford University, USA 2015.11–2016.3 Retrospective 93 54 (22–86) 51:42 For liver fibrosis screening

Sporea et al.

  (2014) (31)

Victor Babeş University of 

  Medicine and Pharmacy, 

  Romania

NA Prospective 383 54 (18–82) 176:207

Chronic liver disease 

  (including liver cirrhosis) 

  + healthy volunteers

Suh et al.

  (2014) (32)
Asan Medical Center, Korea 2011.9–2012.2 Retrospective 239 NA NA Nonspecific

Thiele et al.

  (2016) (33)

Odense University Hospital, 

  Denmark
2013.5–2015.4 Prospective 199 55 145:54 Heavy alcoholics

Thiele et al.

  (2018) (34)

Odense University Hospital, 

  Denmark
2013.5–2016.8 Prospective 269 NA NA Heavy alcoholics

Varbobitis et al.

  (2016) (35)

Laiko General Hospital of 

  Athens, Greece
For 15 months NA 605 52 (20–88) 369:236 Chronic liver disease

Woo et al.

  (2015) (36)

SMG-SNU Boramae Medical 

  Center, Korea
2012.4–2013.4 Prospective 79 56.5 (28–82) 49:30

Chronic liver disease + 

  healthy cohorts

Yoneda et al.

  (2015) (37) 
University of Miami, USA 2013.10–2014.12 Prospective 258 57 (56–59) 137:121

Obese patients (BMI > 25) 

  with chronic liver disease

Yoon et al.

  (2014) (38)

Seoul National University 

  Hospital, Korea
2011.8–2013.1 Retrospective 454 54 (18–86) 229:225 Nonspecific

Yoon et al.

  (2017) (39)

Hanyang University Guri 

  Hospital, Korea
2011.8–2012.8 Prospective 176 54.6 (31–78) 40:136

Methotrexate-treated 

  patients with rheumatoid 

  arthritis

Zeng et al.

  (2014) (40)

Third Affiliated Hospital of Sun 

  Yat-Sen University, China
2011.5–2012.11 Prospective 310 54.5 (18–66) 251:59 Hepatitis B

Zeng et al.

  (2017) (41)

Third Affiliated Hospital of Sun 

  Yat-Sen University, China
2013.8–2015.4 Prospective 257 36.7 (18–65) 199:58 Hepatitis B

BMI = body mass index, NA = not available 
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a publication-bias-adjusted pooled estimate suggested 
good reliability (ICC = 0.77; 95% CI, 0.74–0.79) under the 
trim-and-fill method (Supplementary Fig. 3B in the online-
only Data Supplement). One outlier was present in the 
sensitivity analysis (20), and the pooled ICC was 0.88 (95% 
CI, 0.84–0.90) after removing it, thus suggesting the result 
was robustness.

We obtained the intraobserver reliability of 2D-SWE from 
7 studies including 679 patients (10, 14, 15, 19, 22, 36, 
38). The pooled intraobserver reliability was 0.93 (95% 
CI, 0.89–0.95) using a random-effects model, suggesting 

excellent reliability (Fig. 4B). Significant heterogeneity was 
noted (Cochran’s Q-test: p < 0.01; Higgins I2 = 80%). The 
pooled reliability was still robust (0.95; 95% CI, 0.94–0.96) 
after removing one outlier (36). We could not calculate the 
publication bias for intraobserver reliability because of the 
small sample size (< 10 studies).

Influential Factors
Factors influencing technical performance were reported 

in 16 studies (8, 10, 11, 16, 18, 20, 22, 24, 25, 27, 29, 33, 
35, 37, 38, 40) (Table 6). Overall, technical failure and/

Table 2. Technical Characteristics of Included Studies

Study (Year of Publication) Device Manufacturer Probe
Number of 

Measurements
Representative 

Value

Bende et al. (2017) (8) LOGIQ E9 GE Healthcare C1-6-D convex 10 Median
Bota et al. (2015) (9) Aixplorer Supersonic Imagine SC6-1 convex 3 Mean
Cassinotto et al. (2015) (10) Aixplorer Supersonic Imagine SC6-1 convex 3 Mean
Cassinotto et al. (2016) (11) Aixplorer Supersonic Imagine SC6-1 convex 5 Median
Deffieux et al. (2015) (12) Aixplorer Supersonic Imagine SC6-1 convex 10 Median
Elkrief et al. (2018) (13) Aixplorer Supersonic Imagine SC6-1 convex 3 Mean
Fang et al. (2017) (14) LOGIQ E9 GE Healthcare 6C1 convex 10 Mean
Ferraioli et al. (2012) (15) Aixplorer Supersonic Imagine SC6-1 convex 10 Mean
Ferraioli et al. (2012) (16) Aixplorer Supersonic Imagine SC6-1 convex 4 Mean
Gerber et al. (2015) (17) Aixplorer Supersonic Imagine SC6-1 convex 5 Median
Guibal et al. (2016) (18) Aixplorer Supersonic Imagine SC6-1 convex 5 Median
Hudson et al. (2013) (19) Aixplorer Supersonic Imagine C6-1 curvilinear 5 Mean
Kim et al. (2015) (20) Aixplorer Supersonic Imagine NA 5 Median
Lee et al. (2017) (21) Aplio 500 Canon Medical Systems 1- to 6-MHz convex 6 Mean
Lee et al. (2017) (22) LOGIQ E9 GE Healthcare 6C1 convex 12 Median
Leung et al. (2013) (23) Aixplorer Supersonic Imagine SC6-1 convex 3 Mean
Maruyama et al. (2016) (24) Aplio 500 Canon Medical Systems 3.75-MHz convex More than 5 Median
Mulazzani et al. (2017) (25) Aixplorer Supersonic Imagine XC6-1 5–20 Mean
Pellot-Barakat et al. (2015) (26) Aixplorer Supersonic Imagine SC6-1 convex 3 Mean
Poynard et al. (2013) (27) Aixplorer Supersonic Imagine SC6-1 convex NA NA
Poynard et al. (2016) (28) Aixplorer Supersonic Imagine SC6-1 convex 1 NA
Procopet et al. (2015) (29) Aixplorer Supersonic Imagine SC6-1 convex 3 Median
Sigrist et al. (2017) (30) LOGIQ E9 GE Healthcare C1-6 10 Mean and median
Sporea et al. (2014) (31) Aixplorer Supersonic Imagine SC6-1 convex 5 Median
Suh et al. (2014) (32) Aixplorer Supersonic Imagine SC6-1 convex 3 Median
Thiele et al. (2016) (33) Aixplorer Supersonic Imagine NA 3 Mean
Thiele et al. (2018) (34) Aixplorer Supersonic Imagine SC6-1 convex NA Median
Varbobitis et al. (2016) (35) Aixplorer Supersonic Imagine SC6-1 convex 5–10 Mean and median
Woo et al. (2015) (36) Aixplorer Supersonic Imagine SC6-1 convex 9 Median
Yoneda et al. (2015) (37) Aixplorer Supersonic Imagine NA 5 Median
Yoon et al. (2014) (38) Aixplorer Supersonic Imagine SC6-1 convex 6 Median
Yoon et al. (2017) (39) Aixplorer Supersonic Imagine SC6-1 convex 5 Median
Zeng et al. (2014) (40) Aixplorer Supersonic Imagine SC6-1 convex 5 Mean
Zeng et al. (2017) (41) Aixplorer Supersonic Imagine SC6-1 convex 5 Median
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or unreliable measurement was affected by patient factors, 
including high body mass index/wide waist circumference/
thick intercostal wall suggestive of overweight or obesity, 
old age, inability to optimally hold breath, severe liver 
disease and associated complications (e.g., ascites), 
narrow intercostal space, and long distance between 
the transducer and liver capsule. Additionally, one study 
reported that operator experience significantly influenced 
the measurement reliability of 2D-SWE (28).

DISCUSSION

Our meta-analysis revealed that the pooled proportions of 
technical failures and unreliable measurements of 2D-SWE 
were 2.3% and 7.5%, respectively. Moreover, the 2D-SWE 
measurements showed good to excellent interobserver (ICC 
= 0.87) and intraobserver (ICC = 0.93) reliability, suggesting 
the applicability of 2D-SWE for evaluating liver stiffness. 
Our result also revealed that the technical performance of 
2D-SWE is comparable to TE, the most extensively used 
US elastography, reported to have failure rate of 3.1% 

Study Events Total Proportion 95% CI Weight (F) Weight (R)
Bota et al. 2015 (9) 1 127 0.01 [0.00–0.05] 0.6% 3.7%
Cassinotto et al. 2015 (10) 25 401 0.06 [0.04–0.09] 14.5% 6.6%
Cassinotto et al. 2016 (11) 38 291 0.13 [0.10–0.17] 20.5% 6.6%
Deffieux et al. 2015 (12) 2 120 0.02 [0.00–0.06] 1.2% 4.8%
Elkrief et al. 2018 (13) 5 209 0.02 [0.01–0.06] 3.0% 5.8%
Ferraioli et al. 2012 (16) 3 121 0.02 [0.01–0.07] 1.8% 5.3%
Lee et al. 2017 (22) 1 120 0.01 [0.00–0.06] 0.6% 3.7%
Maruyama et al. 2016 (24) 0 95 0.00 [0.00–0.08] 0.3% 2.5%
Mulazzani et al. 2017 (25) 1 113 0.01 [0.00–0.06] 0.6% 3.7%
Pellot-Barakat et al. 2015 (26) 3 31 0.10 [0.03–0.26] 1.7% 5.2%
Poynard et al. 2013 (27) 0 422 0.00 [0.00–0.02] 0.3% 2.6%
Poynard et al. 2016 (28) 21 2251 0.01 [0.01–0.01] 12.9% 6.5%
Procopet et al. 2015 (29) 1 85 0.01 [0.00–0.08] 0.6% 3.7%
Suh et al. 2014 (32) 9 239 0.04 [0.02–0.07] 5.4% 6.2%
Thiele et al. 2018 (34) 4 269 0.01 [0.01–0.04] 2.4% 5.6%
Woo et al. 2015 (36) 4 79 0.05 [0.02–0.13] 2.4% 5.6%
Yoon et al. 2014 (38) 47 454 0.10 [0.08–0.14] 26.1% 6.7%
Yoon et al. 2017 (39) 2 202 0.01 [0.00–0.04] 1.2% 4.8%
Zeng et al. 2014 (40) 4 310 0.01 [0.00–0.03] 2.4% 5.6%
Zeng et al. 2017 (41) 2 257 0.01 [0.00–0.03] 1.2% 4.8%

Fixed-effect model 6196 0.05 [0.04–0.06] 100.0% –
Random-effects model 0.02 [0.01–0.04] – 100.0%

Heterogeneity: I2 = 90%, p < 0.01 0       0.05       0.10      0.15    0.20
Prevalence

Fig. 2. Forest plots of proportions of technical failure. CI = confidence interval, F = fixed, R = random.

Table 3. Subgroup Analyses for Technical Failure

Subgroup Pooled Proportion (%) 95% CI (%) P
Number of measurements 0.89

≤ 3 (n = 7) 2.7 1.2–6.0
> 3 (n = 11) 2.5 1.2–4.9

Manufacturer 0.15
Supersonic Imagine (n = 18) 2.4 1.4–4.3
Others (n = 2) 0.7 0.1–3.5

Etiology NA
Chronic liver disease (n = 14) 2.4 1.2–4.8
Liver cirrhosis (n = 3) 6.8 2.5–17.0

CI = confidence interval
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and unreliable measurement rate of 15.8% from a study of 
13379 examinations (53).

Currently, all 2D-SWE systems enable quality assessment 

of shear-wave measurements and adjust the display when 
the quality decreases by dropping the offending pixels and 
excluding them when calculating Young’s modulus (54). 

Study Events Total Proportion 95% CI Weight (F) Weight (R)
Bende et al. 2017 (8) 14 331 0.04 [0.03–0.07] 2.6% 5.3%
Bota et al. 2015 (9) 17 127 0.13 [0.08–0.20] 2.8% 5.3%
Cassinotto et al. 2016 (11) 21 291 0.07 [0.05–0.11] 3.7% 5.4%
Elkrief et al. 2018 (13) 126 191 0.66 [0.59–0.72] 8.2% 5.5%
Gerber et al. 2015 (17) 0 120 0.00 [0.00–0.06] 0.1% 2.1%
Guibal et al. 2016 (18) 18 170 0.11 [0.07–0.16] 3.1% 5.3%
Kim et al. 2015 (20) 12 197 0.06 [0.03–0.10] 2.2% 5.2%
Lee et al. 2017 (21) 4 115 0.03 [0.01–0.09] 0.7% 4.6%
Lee et al. 2017 (22) 10 120 0.08 [0.05–0.15] 1.8% 5.1%
Maruyama et al. 2016 (24) 24 95 0.25 [0.18–0.35] 3.4% 5.4%
Poynard et al. 2013 (27) 35 422 0.08 [0.06–0.11] 6.1% 5.5%
Poynard et al. 2016 (28) 214 2251 0.10 [0.08–0.11] 37.1% 5.6%
Procopet et al. 2015 (29) 18 85 0.21 [0.14–0.31] 2.7% 5.3%
Sporea et al. 2014 (31) 77 383 0.20 [0.16–0.24] 11.8% 5.5%
Thiele et al. 2016 (33) 3 179 0.02 [0.01–0.05] 0.6% 4.3%
Varbobitis et al. 2016 (35) 13 605 0.02 [0.01–0.04] 2.4% 5.3%
Yoneda et al. 2015 (37) 14 258 0.05 [0.03–0.09] 2.5% 5.3%
Yoon et al. 2014 (38) 40 454 0.09 [0.07–0.12] 7.0% 5.5%
Zeng et al. 2014 (40) 3 310 0.01 [0.00–0.03] 0.6% 4.3%
Zeng et al. 2017 (41) 3 257 0.01 [0.00–0.04] 0.6% 4.3%

Fixed-effect model 6961 0.12 [0.11–0.13] 100.0% –
Random-effects model 0.07 [0.05–0.12] – 100.0%

Heterogeneity: I2 = 96%, p < 0.01

Prevalence

Fig. 3. Forest plots of proportions of unreliable measurements.

0        0.1       0.2       0.3       0.4

Table 4. Definition of Reliable Measurements in Eligible Studies

Study (Year of Publication) Definition
Bende et al. (2017) (8) 10 measurements + IQR/median < 30%
Bota et al. (2015) (9) 3 measurements + SD/mean < 30%
Cassinotto et al. (2016) (11) Liver stiffness value < 7.1 kPa or IQR/median ≤ 0.30
Elkrief et al. (2018) (13) Variation coefficient < 0.1 + acquisition depth < 5.6 cm*
Gerber et al. (2015) (17) Minimum value ≥ 1 kPa
Guibal et al. (2016) (18) Box was filled more than 2/3 + minimal value > 0.2 kPa
Kim et al. (2015) (20) 5 valid measurements
Lee et al. (2017) (21) IQR/median ≤ 30%
Lee et al. (2017) (22) IQR/median ≤ 30%
Maruyama et al. (2016) (24) SD/median ≤ 49%
Poynard et al. (2013) (27) Minimum value ≥ 0.2 kPa
Poynard et al. (2016) (28) Minimum value ≥ 0.2 kPa
Procopet et al. (2015) (29) SD/median ≤ 0.1 or depth of measurement < 5.6 cm
Sporea et al. (2014) (31) 5 valid measurements
Thiele et al. (2016) (33) Stability of viscoelasticity map ≥ 3 s + a homogeneous color in ROI ≥ 15 mm + SD/mean ≤ 30%
Varbobitis et al. (2016) (35) 5 valid measurements + SD/mean < 25%
Yoneda et al. (2015) (37) 5 valid measurements + success rate ≥ 60% + IQR/median < 30%
Yoon et al. (2014) (38) IQR/median ≤ 30%
Zeng et al. (2014) (40) 5 valid measurements + IQR/median < 30% + success rate ≥ 60%
Zeng et al. (2017) (41) IQR/median < 30% + success rate ≥ 60%

*Represents definition of highly reliable measurement. IQR = interquartile range, ROI = region of interest, SD = standard deviation
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Additionally, Aplio 500 shows a display of shear waves 
travelling, suggesting acceptable quality if consecutive lines 
are parallel. Other manufacturers also provide an additional 
vendor-specific approach to quality judgement, including 
confidence maps in Philips systems and the stability index 
in the new software version of Aixplorer (7). 

However, according to the 2017 European Federation of 
Societies for Ultrasound in Medicine and Biology (EFSUMB) 
guidelines, no agreement exists on the quality criteria 
for 2D-SWE and unreliable measurements are randomly 
defined across studies (7). Naturally, the proportion of 
unreliable measurements were closely influenced by the 

Table 5. Subgroup Analyses for Unreliable Measurements

Subgroup Pooled Proportion (%) 95% CI P
Number of measurements < 0.01

≤ 3 (n = 5) 15.2 4.1–43.1
> 3 (n = 14) 5.7 3.5–9.1

Manufacturer 0.88
Supersonic Imagine (n = 16) 7.3 4.2–12.2
Others (n = 4) 8.0 2.8–20.8

Etiology NA
Chronic liver disease (n = 12) 6.3 3.0–12.9

Fig. 4. Forest plot of interobserver reliability (A) and intraobserver reliability (B). ICC = intraclass correlation coefficient

Study Total Correlation Reliability (ICC) 95% CI Weight (F) Weight (R)

Cassinotto et al. 2015 (10) 25 0.95 [0.89–0.98] 3.3% 12.3%
Fang et al. 2017 (14) 11 0.83 [0.46–0.95] 1.2% 7.0%
Ferraioli et al. 2012 (15) 42 0.95 [0.91–0.97] 5.9% 15.1%
Hudson et al. 2013 (19) 15 0.92 [0.77–0.97] 1.8% 9.1%
Lee et al. 2017 (22) 105 0.95 [0.93–0.97] 15.5% 18.5%
Woo et al. 2015 (36) 74 0.83 [0.74–0.89] 10.8% 17.4%
Yoon et al. 2014 (38) 407 0.95 [0.94–0.96] 61.4% 20.6%

Fixed-effect model 679 0.94 [0.93–0.95] 100.0% –
Random-effects model 0.93 [0.89–0.95] – 100.0%

Heterogeneity: I2 = 80%, p < 0.01
0.75      0.80      0.85        0.90        0.95        1

B

Study Total Correlation Reliability (ICC) 95% CI Weight (F) Weight (R)

Cassinotto et al. 2015 (10) 25 0.94 [0.87–0.97] 4.5% 8.5%
Fang et al. 2017 (14) 11 0.93 [0.75–0.98] 1.6% 4.2%
Ferraioli et al. 2012 (15) 42 0.88 [0.79–0.93] 8.0% 11.4%
Guibal et al. 2016 (18) 25 0.92 [0.82–0.96] 4.5% 8.5%
Hudson et al. 2013 (19) 15 0.78 [0.45–0.92] 2.5% 5.7%
Kim et al. 2015 (20) 185 0.77 [0.70–0.82] 37.4% 17.4%
Lee et al. 2017 (21) 99 0.88 [0.82–0.92] 19.7% 15.4%
Lee et al. 2017 (22) 20 0.87 [0.70–0.95] 3.5% 7.2%
Leung et al. 2013 (23) 21 0.85 [0.66–0.94] 3.7% 7.5%
Woo et al. 2015 (36) 74 0.83 [0.74–0.89] 14.6% 14.2%

Fixed-effect model 517 0.84 [0.81–0.87] 100.0% –
Random-effects model 0.87 [0.82–0.90] – 100.0%

Heterogeneity: I2 = 58%, p = 0.01
0.60          0.70          0.80           0.90             1

A
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definition, as shown by Elkrief et al. (13) whose proportion 
was substantial under the strict definition. Some authors 
(17, 18, 27, 28) used minimal Young’s modulus to identify 
invalid measurements. The Society of Radiologists in 
Ultrasound consensus (55) and other studies (8, 11, 21, 
22, 37, 38, 40, 41) recommend interquartile ranges/median 
values below 30% as valid measurements mimicking the 
TE reliability criteria. To reduce such variability and enable 
standardization, a collaborative effort by academia and 
manufacturers is required (56).

Given the significant heterogeneity in technical failure 
and unreliable measurements among the studies in this 
meta-analysis, subgroup analyses were conducted to explore 
potential factors influencing successful and qualified 
measurements. Notably, the number of measurements 
significantly affected the unreliable measurements; 
thus, multiple measurements in the same location 
are recommended for obtaining reliable liver-stiffness 
measurements (55). Because no consensus exists on 
the optimal measurement numbers, the included studies 
performed various numbers of measurements ranging from 
3 to 15 (29, 40, 57, 58). Recently, the 2017 EFSUMB 
guidelines recommended that three measurements suffice 
to obtain consistent results for assessing liver fibrosis 
and portal hypertension (7). However, our subgroup 
analyses revealed that studies conducting more than three 
measurements showed fewer unreliable measurements 
than did those conducting three measurements or less. 

Nevertheless, no difference was found in technical 
failure between the two groups. Thus, we suggest that 
the optimal minimum number of 2D-SWE measurements 
should be further verified. We believe the composition of 
the population also affects technical success and reliable 
measurements as liver disease leads to improper procedures 
caused by changes in liver volumes, secondary interference 
by an interposed colon, or other complications (38). Three 
studies targeting patients with cirrhosis had a higher 
proportion of technical failure, even though studies and 
study subsets targeting patients with chronic liver disease 
showed no difference in technical failure and unreliable 
measurements with the overall population.

2D-SWE helps select a ROI in a representative area of the 
liver, and it could be saved and followed over time. This could 
reduce sampling variability in repeated measurements (59). 
Indeed, good to excellent interobserver and intraobserver 
reliability in our meta-analysis supports this advantage of 
2D-SWE. Conversely, 2D-SWE requires technical expertise 
because the operators need to consistently place the points 
of measurements in the liver. One study reported that 
intraobserver agreement between measurements on different 
days drops from 0.84 for experienced examiners to 0.65 for 
beginners (15). Therefore, measurements should be performed 
by experienced operators, and beginners are recommended at 
least 50 supervised measurements (7, 15, 60).

Our study has several limitations. Despite the significant 
heterogeneity in the meta-analysis, we could not conduct 

Table 6. Factors Influencing Technical Failures and/or Unreliable Measurements

Study (Year of publication) Factors
Bende et al. (2017) (8) High BMI*
Cassinotto et al. (2015) (10) High BMI, thick intercostal wall, lower albumin, female*
Cassinotto et al. (2016) (11) Wide waist circumference, high BMI, thick intercostal wall, diabetes*
Ferraioli et al. (2012) (16) Narrow intercostal space (n = 2), obesity (n = 1)
Guibal et al. (2016) (18) Poor acoustic window (n = 14, including patients with BMI ≥ 30 kg/m2), inadequate breath holding (n = 4)
Kim et al. (2015) (20) Obesity or severe fatty liver (n = 10), inadequate breath holding (n = 2)
Lee et al. (2017) (22) Old age, presence of ascites, distance between transducer and Glisson capsule*
Maruyama et al. (2016) (24) High BMI*, ascites (n = 1)
Mulazzani et al. (2017) (25) Liver cirrhosis with portal hypertension and high BMI (n = 1)
Poynard et al. (2013) (27) Operator experience, severity of fibrosis estimated using Fibrotest*
Procopet et al. (2015) (29) Liver cirrhosis with high BMI and inadequate breath holding (n = 1)
Thiele et al. (2016) (33) Overweight (n = 6), capsule distance > 3 cm (n = 1)
Varbobitis et al. (2016) (35) Old age, obesity or overweight, use of statins for hyperlipidemia*
Yoneda et al. (2015) (37) High BMI
Yoon et al. (2014) (38) High BMI, distance between transducer and liver*
Zeng et al. (2014) (40) Narrow intercostal space, thick thoracic wall (> 2 cm)

*Significantly different between patients with technical failure or unreliable measurements and those with successful measurements. 
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further subgroup analyses for potential factors influencing 
the results and heterogeneity, especially the impact of 
overweight or obesity on technical performance. Second, 
many of the included studies used the Aixplorer system 
because the other manufacturers only recently released their 
2D-SWE devices. However, we included all available studies 
and our results may be generally applied to all 2D-SWE 
devices. Third, significant publication bias was observed 
in the meta-analysis for technical failure and interobserver 
reliability. After using the trim-and-fill method, however, 
the outcomes were still robust. 

In conclusion, 2D-SWE has good technical performance 
for assessing liver stiffness, being characterized by high 
technical success and reliability. Nevertheless, future studies 
should establish the quality criteria and optimal number of 
measurements.

Supplementary Materials

The online-only Data Supplement is available with this 
article at https://doi.org/10.3348/kjr.2018.0812.

Conflicts of Interest
The authors have no potential conflicts of interest to 
disclose.

ORCID iDs
Kyung Won Kim 

https://orcid.org/0000-0002-1532-5970
Dong Wook Kim 

https://orcid.org/0000-0001-7887-657X
Chong Hyun Suh

https://orcid.org/0000-0002-4737-0530
Junhee Pyo

https://orcid.org/0000-0002-2807-1340
Chan Park

https://orcid.org/0000-0002-9838-8757
Seung Chai Jung  

https://orcid.org/0000-0001-5559-7973

REFERENCES

1.	Kennedy P, Wagner M, Castéra L, Hong CW, Johnson CL, 
Sirlin CB, et al. Quantitative elastography methods in liver 
disease: current evidence and future directions. Radiology 
2018;286:738-763.

2.	Herrmann E, de Lédinghen V, Cassinotto C, Chu WC, Leung VY, 

Ferraioli G, et al. Assessment of biopsy-proven liver fibrosis by 
two-dimensional shear wave elastography: an individual patient 
data-based meta-analysis. Hepatology 2018;67:260-272
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