• Title/Summary/Keyword: high-density

Search Result 13,218, Processing Time 0.048 seconds

Fabrication of Label-Free Biochips Based on Localized Surface Plasmon Resonance (LSPR) and Its Application to Biosensors (국소 표면 플라즈몬 공명 (LSPR) 기반 비표지 바이오칩 제작 및 바이오센서로의 응용)

  • Kim, Do-Kyun;Park, Tae-Jung;Lee, Sang-Yup
    • KSBB Journal
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • In the past decade, we have observed rapid advances in the development of biochips in many fields including medical and environmental monitoring. Biochip experiments involve immobilizing a ligand on a solid substrate surface, and monitoring its interaction with an analyte in a sample solution. Metal nanoparticles can display extinction bands on their surfaces. These charge density oscillations are simply known as the localized surface plasmon resonance (LSPR). The high sensitivity of LSPR has been utilized to design biochips for the label-free detection of biomolecular interactions with various ligands. LSPR-based optical biochips and biosensors are easy to fabricate, and the apparatus cost for the evaluation of optical characteristics is lower than that for the conventional surface plasmon resonance apparatus. Furthermore, the operation procedure has become more convenient as it does not require labeling procedure. In this paper, we review the recent advances in LSPR research and also describe the LSPR-based optical biosensor constructed with a core-shell dielectric nanoparticle biochip for its application to label-free biomolecular detections such as antigen-antibody interaction.

Validation of Satellite SMAP Sea Surface Salinity using Ieodo Ocean Research Station Data (이어도 해양과학기지 자료를 활용한 SMAP 인공위성 염분 검증)

  • Park, Jae-Jin;Park, Kyung-Ae;Kim, Hee-Young;Lee, Eunil;Byun, Do-Seong;Jeong, Kwang-Yeong
    • Journal of the Korean earth science society
    • /
    • v.41 no.5
    • /
    • pp.469-477
    • /
    • 2020
  • Salinity is not only an important variable that determines the density of the ocean but also one of the main parameters representing the global water cycle. Ocean salinity observations have been mainly conducted using ships, Argo floats, and buoys. Since the first satellite salinity was launched in 2009, it is also possible to observe sea surface salinity in the global ocean using satellite salinity data. However, the satellite salinity data contain various errors, it is necessary to validate its accuracy before applying it as research data. In this study, the salinity accuracy between the Soil Moisture Active Passive (SMAP) satellite salinity data and the in-situ salinity data provided by the Ieodo ocean research station was evaluated, and the error characteristics were analyzed from April 2015 to August 2020. As a result, a total of 314 match-up points were produced, and the root mean square error (RMSE) and mean bias of salinity were 1.79 and 0.91 psu, respectively. Overall, the satellite salinity was overestimated compare to the in-situ salinity. Satellite salinity is dependent on various marine environmental factors such as season, sea surface temperature (SST), and wind speed. In summer, the difference between the satellite salinity and the in-situ salinity was less than 0.18 psu. This means that the accuracy of satellite salinity increases at high SST rather than at low SST. This accuracy was affected by the sensitivity of the sensor. Likewise, the error was reduced at wind speeds greater than 5 m s-1. This study suggests that satellite-derived salinity data should be used in coastal areas for limited use by checking if they are suitable for specific research purposes.

Analysis of Misconceptions on Oceanic Front and Fishing Ground in Secondary-School Science and Earth Science Textbooks (중등학교 과학 및 지구과학 교과서 조경 수역 및 어장에 관한 오개념 분석)

  • Park, Kyung-Ae;Lee, Jae Yon;Kang, Chang-Keun;Kim, Chang-Sin
    • Journal of the Korean earth science society
    • /
    • v.41 no.5
    • /
    • pp.504-519
    • /
    • 2020
  • Oceanic fronts, which are areas where sea water with different properties meet in the ocean, play an important role in controlling weather and climate change through air-sea interactions and marine dynamics such as heat and momentum exchange and processes by which properties of sea water are mixed. Such oceanic fronts have long been described in secondary school textbooks with the term 'Jokyung water zone (JWC hereafter) or oceanic front', meaning areas where the different currents met, and were related to fishing grounds in the East Sea. However, higher education materials and marine scientists have not used this term for the past few decades; therefore, the appropriateness of the term needs to be analyzed to remove any misconceptions presented. This study analyzed 11 secondary school textbooks (5 middle school textbooks and 6 high school textbooks) based on the revised 2015 curriculum. A survey of 30 secondary school science teachers was also conducted to analyze their awareness of the problems. An analysis of the textbook contents related to the JWC and fishing grounds found several errors and misconceptions that did not correspond with scientific facts. Although the textbooks mainly uses the concept of the JWC to represent the meeting of cold and warm currents, it would be reasonable to replace it with the more comprehensive term 'oceanic front', which would indicate an area where different properties of sea water-such as its temperature, salinity, density, and velocity-interact. In the textbooks, seasonal changes in the fishing grounds are linked to seasonal changes in the North Korean Cold Current (NKCC), which moves southwards in winter and northwards in summer; this is the complete opposite of previous scientific knowledge, which describes it strengthening in summer. Fishing grounds are not limited to narrow coastal zones; they are widespread throughout the East Sea. The results of the survey of teachers demonstrated that this misconception has persisted for decades. This study emphasized the importance of using scientific knowledge to correct misconceptions related to the JWC, fishing grounds, and the NKCC and addressed the importance of transferring procedures to the curriculum. It is expected that the conclusions of this study will have an important role on textbook revision and teacher education in the future.

Dehydration of Foamed Fish (Sardine)-Starch Paste by Microwave Heating 1. Formulation and Processing Conditions (어육(정어러) 발포건조제품가공에 관한 연구 1. 원료$\cdot$첨가물의 배합 및 가공조건)

  • LEE Kang-Ho;LEE Byeong-Ho;You Byeong-Jin;SONG Dong-Suck;SUH Jae-Soo;JEA YOi-Guan;RYU Hong-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.15 no.4
    • /
    • pp.283-290
    • /
    • 1982
  • Sardine and mackerel so called dark muscled fish have been underutilized due to the disadvantages in bloody meat color, high content of fat, and postmortem instability of protein. Recent efforts were made to overcome these defects and develope new types of product such as texturized protein concentrates and dark muscle eliminated minced fish. Approach of this study is based on the rapid dehydration of foamed fish-starch paste by dielectric heating. In process comminuted sardine meat was washed more than three times by soaking and decanting in chilled water and finally centrifuged. The meat was ground in a stone mortar added Ivith adequate amounts of salt, foaming agent, and other ingredients for aid to elasticity and foam stability. The ground meat paste was extruded in finger shape and heated in a microwave oven to give foamed, expanded, and porous solid structure by dehydration. Dielectric onstant $(\varepsilon')$ and dielect.ic loss $(\varepsilon")$ values of sardine meat paste were influenced by wavelength and moisture level. Those values at 100 KHz and 15 MHz were ranged 2.25-9.86; 2.22-4,18 for E' and 0.24-19.24; 0.16-1.20 for E", respectively, at the moisture levels of $4.2-13.8\%$. For a formula for fish-starch paste preparation, addition of $20-30\%$ starch (potato starch) to the weight of fish meat, $2-4\%$ salt, and $5-10\%$ soybean protein was adequate to yield 4-5 folds of expansion in volume when heated. Addition of e99 yolk was of benefit to micronize foam size and better crispness. In order to provide better foaming and dehydration, addition of $0.2-0.5\%$sodium bicarbonate, foaming agent, was proper to result in foam size of 0.5-0.7 mm and foam density of $200-400\;/cm^2$ which gave a good crispness. Heating time was depended upon the moisture level of fish-starch paste. For a finger shaped paste (1.0cm. $D\times10cm.L$) heating for 150-200 sec. in a microwave oven (700W. 2.45GHz) was sufficient to generate foams, expand, and solidify the porous structure of fish-starch paste. When the moisture content was above $55\%$ browning and scorching was deepened due to over-expansion and over-heating whereas the crispness was hardened by insufficient expansion at lower moisture content. In quality evaluation of the product, chemical composition of $30\%$ starch and $3\%$ salt added product was moisture $8.8\%$, lipid $2.4\%$, carbohydrate $46.7\%$, protein $36.1\%$, and ash $6.0\%$. Eleven membered panel test evaluated that fish-starch paste was acceptable in color, crisp-ness, taste, except a trace of fishy odour which could be masked by the addition of spice extracts.

  • PDF

Uplift Bearing Capacity of Spiral Steel Peg for the Single Span Greenhouse (온실용 나선철항의 인발저항력 검토)

  • Lee, Bong Guk;Yun, Sung Wook;Choi, Man Kwon;Lee, Si Young;Moon, Sung Dong;Yu, Chan;Yoon, Yong Cheol
    • Journal of Bio-Environment Control
    • /
    • v.23 no.2
    • /
    • pp.109-115
    • /
    • 2014
  • This study examined the uplift bearing capacity of spiral steel pegs according to the degree of soil compaction and embedded depth in a small-scaled lab test. As a result, their uplift bearing capacity increased according to the degree of soil compaction and embedded depth. The uplift bearing capacity under the ground condition of 85% compaction rate especially recorded 48.9 kgf, 57.9 kgf, 86.2 kgf and 116.6 kgf at embedded depth of 25 cm, 30 cm, 35 cm and 40 cm, respectively, being considerably higher than under other ground conditions. There were huge differences in the uplift bearing capacity of spiral steel pegs according to the compaction conditions of ground. Their maximum uplift bearing capacity was 116.6 kgf under the ground condition of 85% compaction rate and at embedded depth of 40 cm, and it is very high considering the data of spiral steel pegs. It is thus estimated that wind damage can be effectively reduced by careful maintenance of ground condition surrounding spiral steel pegs. In addition, spiral steel pegs will be able to make a contribution to greenhouse structural stability if proper installation methods are provided including the number and interval according to the types of greenhouse as well as fixation of plastic film. The findings of the study indicate that the optimal effects of spiral steel pegs for greenhouse can be achieved at embedded depth of more than 35cm and compaction degree of more than 85%. The relative density of the model ground in the test was 67% at compaction rate of 85%.

Physical Fitness, Leisure Time Physical Activity, and Serum Lipid Levels in Middle-Aged Male Workers (중년 남성 근로자에서 신체 적합도, 여가중 신체 활동과 혈중 지질 농도)

  • Kim, Jang-Rak;Nam, Bock-Dong;Kim, Ju-Ho;Lee, Song-Kwon;Moon, Joong-Kap;Lee, Jang-Ho;Hong, Dae-Yong
    • Journal of Preventive Medicine and Public Health
    • /
    • v.29 no.2 s.53
    • /
    • pp.173-186
    • /
    • 1996
  • This is a cross-sectional study to evaluate the relationships between physical fitness, leisure time physical activity, and serum lipid levels in middle-aged male workers. Physical fitness was measured by a step test score, and leisure time physical activity was self-reported on a questionnaire. Serum total cholesterol was negatively related to physical fitness(r=-0.27), and positively to obesity index(r=0.27). But leisure time physical activity was related to total cholesterol negatively(r=-0.20) only in subjects whose total cholesterol levels were above 170mg/dl. High density lipoprotein(HDL) cholesterol was positively related to physical fitness(r=0.15), negatively to obestiy index(r=-0.22), and positively to weekly alcohol consumption(r=0.14). Total cholesterol/HDL cholesterol ratio was related to physical fitness(r=-0.23), obesity index(r=0.32), total cigarette index (r=0.13), weekly alcohol consumption(r=-0.13), and vegetable preference(r=0.13). Physical fitness was also related to leisure time physical activity(r=0.19) and obesity index(r=-0.18). In multiple linear regression models, physical fitness(beta=-0.23) and obesity index(beta=0.18) were significantly associated with total cholesterol, obesity index(beta=-0.25) with HDLcholesterol, and obesity index(beta=0.30), physical fitness(beta=-0.16) and vegetable preference (beta=0.14) with total cholesterol/HDL cholesterol ratio. In conclusion, as physical fitness has a stronger relationship with serum lipid levels than leisure time physical activity, and the association between physical fitness and leisure time physical activity is modest, physical fitness should be added as an important variable in addition to activity in future epidemiologic studies.

  • PDF

Effects of Green Manure Crops on Red-pepper Yields and Soil Physico-chemical Properties in the Vinyl House (시설재배지 녹비작물 재배가 고추의 수량과 토양 이화학성에 미치는 영향)

  • Yang, Seung-Koo;Seo, Youn-Won;Lee, You-Seok;Kim, Hyun-Woo;Ma, Kyung-Cheel;Lim, Kyeong-Ho;Kim, Hong-Jae;Kim, Jung-Guen;Jung, Woo-Jin
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.2
    • /
    • pp.215-228
    • /
    • 2011
  • To establish the organic cultivation of pepper using green manure crops, this work studied the growth characteristics and yield of green manure crops, mineral composition of green manure crops, mineral uptake in shoots of green manure crops, chemical composition in soil of green manure crops, and the growth characteristics and yield of pepper in vinyl house. Shoot dry weight of green manure crops was higher level in Sorghum bicolor and Sorghum than in Crotalaria juncea and Glycine max. Also, the roots were spread deeply into soil in Sorghum bicolor and Sorghum. Density of root-knot nematodes in rhizosphere of green manure crops was significantly more decrease in Crotalaria juncea and Sorghum than in Glycine max and Sorghum bicolor. Total nitrogen and CaO content of green manure crops was significantly higher in Crotalaria juncea and Glycine max than in Sorghum bicolor and Sorghum. $K_2O$ content was significantly higher in Sorghum bicolor and Sorghum than in Crotalaria juncea and Glycine max. MgO content was not significant difference at all green manure crops. Cations content ratio of $K_2O$ : CaO : MgO was 3.4 : 1.4 : 1. Total nitrogen uptake in shoots of green manure crops was high level in Glycine max, Sorghum bicolor and Sorghum compared with in Crotalaria juncea. $K_2O$ and MgO uptake was significantly higher in Sorghum bicolor and Sorghum than in Crotalaria juncea and Glycine max. Value of pH in soil of green manure crops was more increase in Crotalaria juncea and Glycine max than in Sorghum bicolor, Sorghum and control, but after cultivation of pepper pH in soil was recovered with initial soil pH before seeding of green manure crops. EC value in control, green manure crops, and pepper cultivation decreased by 44%, 15~18%, and 38~61% level, respectively, compared with initial soil of green manure crops treatment. K content in soil of control, Crotalaria juncea and Glycine max cultivation was increased by 14%, but the K content in soil of Sorghum bicolor and Sorghum decreased by 24~38%. Cation exchange capacity (CEC) in soil of Crotalaria juncea and Sorghum bicolor decreased by 11%, but CEC in soil of Glycine max, Sorghum and control increased by 11%. Harvest fruit yield was higher in Crotalaria juncea, Glycine max, and Sorghum bicolor cultivation than in control and Sorghum.

Biogeochemical Study of Dissolved Organic and Inorganic Compounds under Oxic/Anoxic Environment in Lake Shihwa (시화호 산화-환원 환경하의 용존 유, 무기 화합물의 생지화학적 연구)

  • Park, Yong-Chul;Park, Jun-Kun;Han, Myong-Woo;Son, Seung-Kyu;Kim, Moon-Koo;Huh, Seong-Hoi
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.2 no.2
    • /
    • pp.53-68
    • /
    • 1997
  • Lake Shihwa, artificially constructed since 1988, shows a typical two-layered system depending on strong haline density stratification. Sill of the water gate at 6 m depth greatly restricts physical mixing with outer seawater and circulation in the lake, and contributes to the enhancement of anoxic environment in the deeper layer. With this enclosed physical environment, Lake Shihwa receives enormous amounts of organics, ammonia, and other pollutants from the neighboring municipal and industrial complexes through six major streams, thus developing biogeochemical differentiation of anoxic to suboxic environment in the high saline bottom water and highly eutrophicated brackish surface water. This study investigated vertical structures, biogeochemical behaviors and processes of various organic and inorganic compounds around oxic-anoxic interface. Nitrite and nitrate rapidly decreased below the pycnocline where about $1{\times}10^8$ tons of hypoxic bottom water exist. In this bottom layer, ammonium ranged from 75 to 360 ${\mu}M$ mainly resulting from deamination of dissolved organic nitrogen and ammonification of precipitated organic particles. Despite large amounts of surface water discharge and dilution by outer seawater inflow about $3{\times}10^8$ tons from April to August, 1996, bottom layer did not show any improvement of water quality and maintained highly reduced environment. The main reason seems to be imbalance between ineffectiveness of dilution due to shallow depth and large surface area, overloaded POC influx from the eutrophicated surface biological activity, and poor replenishment of oxygen in this artificial lake system. Therefore, as long as current salinity dependent two-layered system maintains with its physical limitations, any improvement of water quality cannot be foreseen in Lake Shihwa.

  • PDF

Impacts of Argo temperature in East Sea Regional Ocean Model with a 3D-Var Data Assimilation (동해 해양자료동화시스템에 대한 Argo 자료동화 민감도 분석)

  • KIM, SOYEON;JO, YOUNGSOON;KIM, YOUNG-HO;LIM, BYUNGHWAN;CHANG, PIL-HUN
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.20 no.3
    • /
    • pp.119-130
    • /
    • 2015
  • Impacts of Argo temperature assimilation on the analysis fields in the East Sea is investigated by using DAESROM, the East Sea Regional Ocean Model with a 3-dimensional variational assimilation module (Kim et al., 2009). Namely, we produced analysis fields in 2009, in which temperature profiles, sea surface temperature (SST) and sea surface height (SSH) anomaly were assimilated (Exp. AllDa) and carried out additional experiment by withdrawing Argo temperature data (Exp. NoArgo). When comparing both experimental results using assimilated temperature profiles, Root Mean Square Error (RMSE) of the Exp. AllDa is generally lower than the Exp. NoArgo. In particular, the Argo impacts are large in the subsurface layer, showing the RMSE difference of about $0.5^{\circ}C$. Based on the observations of 14 surface drifters, Argo impacts on the current and temperature fields in the surface layer are investigated. In general, surface currents along the drifter positions are improved in the Exp. AllDa, and large RMSE differences (about 2.0~6.0 cm/s) between both experiments are found in drifters which observed longer period in the southern region where Argo density was high. On the other hand, Argo impacts on the SST fields are negligible, and it is considered that SST assimilation with 1-day interval has dominant effects. Similar to the difference of surface current fields between both experiments, SSH fields also reveal significant difference in the southern East Sea, for example the southwestern Yamato Basin where anticyclonic circulation develops. The comparison of SSH fields implies that SSH assimilation does not correct the SSH difference caused by withdrawing Argo data. Thus Argo assimilation has an important role to reproduce meso-scale circulation features in the East Sea.

Relationship between a Dense Bloom of Cyanobacterium Anabaena spp. and Rainfalls in the North Han River System of South Korea (북한강 수계의 남조 Anabaena 대발생과 강우의 관계)

  • Byun, Jeong-Hwan;Cho, In-Hwan;Hwang, Soon-Jin;Park, Myung-Hwan;Byeon, Myeong-Seop;Kim, Baik-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.47 no.2
    • /
    • pp.116-126
    • /
    • 2014
  • To evaluate the relationship between dynamics of Cyanobacterial bloom and rainfalls, a monthly monitoring of water quality and phytoplankton from the three serial lakes (Lake Ui-am, Lake Chung-pyeong and Lake Pal-dang) in the North Han River System were examined 12 times from May 2012 to March 2013. A dense bloom of cyanobacterium Anabaena spp., was occurred over three lakes in the summer season of 2012. In Lake Ui-am, the Anabaena population appeared in June, showed a peak in July (43,850 cells $mL^{-1}$) and disappeared in November 2012. In Lake Chung-pyeong and Lake Pal-dang, Anabaena population commonly appeared in July, showed the peaks (31,648 cells $mL^{-1}$ and 7,136 cells $mL^{-1}$, respectively) in August, and entirely disappeared in September 2012. Over the three lakes, the phytoplankton community was commonly dominated by diatoms before Monsoon, cyanobacteria during Monsoon, and diatoms after Monsoon, respectively, indicating a Monsoon-dependent succession. A correlation analysis revealed that dynamics of Anabaena population was strongly related with rainfall (r=0.72, r=0.83, r=0.88, P<0.01 for three lakes), and partly with nutrients, inflow and outflow of lakes. Therefore, this study indicates that the outbreak and destruction of Anabaena bloom in North Han River System between 2012 and 2013 was impacted by rainfalls. However, a high density of cyanobacteria in Lake Ui-am remained after Monsoon, and thus, may paroduce bad-order and toxins from phytoplankton.