• Title/Summary/Keyword: high-altitude

Search Result 1,146, Processing Time 0.029 seconds

Computational and Experimental Simulations of the Flow Characteristics of an Aerospike Nozzle

  • Rajesh, G.;Kumar, Gyanesh;Kim, H.D.;George, Mathew
    • Journal of the Korean Society of Visualization
    • /
    • v.10 no.1
    • /
    • pp.47-54
    • /
    • 2012
  • Single Stage To Orbit (SSTO) missions which require its engines to be operated at varying back pressure conditions, use engines operate at high combustion chamber pressures (more than 100bar) with moderate area ratios (AR 70~80). This ensures that the exhaust jet flows full during most part of the operational regimes by optimal expansion at each altitude. Aero-spike nozzle is a kind of altitude adaptation nozzle where requirement of high combustion chamber pressures can be avoided as the flow is adapted to the outside conditions by the virtue of the nozzle configuration. However, the thrust prediction using the conventional thrust equations remains to be a challenge as the nozzle plume shapes vary with the back pressure conditions. In the present work, the performance evaluation of a new aero-spike nozzle is being carried out. Computational studies are carried out to predict the thrust generated by the aero-spike nozzle in varying back pressure conditions which requires the unsteady pressure boundary conditions in the computational domain. Schlieren pictures are taken to validate the computational results. It is found that the flow in the aero-spike nozzle is mainly affected by the base wall pressure variation. The aerospike nozzle exhibits maximum performance in the properly expanded flow regime due to the open wake formation.

Shock Response Prediction of a Low Altitude Earth Observation Satellite During Launch Vehicle Separation

  • Lee, Dae-Oen;Han, Jae-Hung;Jang, Hae-Won;Woo, Sung-Hyun;Kim, Kyung-Won
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.1
    • /
    • pp.49-57
    • /
    • 2010
  • Several pyrotechnic devices are employed over the course of satellite's missions, generally for the separation of structural subsystems and deployment of appendages. Firing of pyrotechnic devices results in impulsive loads characterized by high peak acceleration and high frequency content which can cause failures of various flight hardware elements and small components. Thus, accurate prediction of acceleration level in various components of spacecraft due to pyrotechnic devices is important. In this paper, two methods for pyroshock prediction, an empirical model and statistical energy analysis in conjunction with virtual mode synthesis, are applied to predict shock response of a low altitude earth observation satellite during launch vehicle separation. The predicted results are then evaluated through comparison with the shock test results.

A Study On the Ejector Design Technique And Flow Characteristics (초음속 지상추진시험설비의 이젝터 설계 기법 및 유동 특성 연구)

  • Lee Yang-Ji;Cha Bong-Jun;Yang Soo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.1
    • /
    • pp.54-63
    • /
    • 2006
  • Ejector system are used to transport a low momentum flow to the higher pressure flow by the momentum change between high and low momentum flows. This system is used to simulate the high altitude and Mach number condition over altitude 20 km and Mach 4 of the supersonic test facility. We applied the design and the performance analysis technique(EISIMP code) of the Ramjet Test Facility(RJTF) air system in JAXA to the ejector system of the ramjet test facility in KARI. After preliminary design of the ejector system, we performed a computational study using FLUENT and investigated shock structures and flow characteristics of the ejector system.

Multi-Stage Turbocharger Gasoline IC Engine Simulation for HALE UAV (고고도 장기체공 무인기 적용을 위한 다단 터보차저 가솔린 엔진 시스템 시뮬레이션)

  • Kang, Seungwoo;Bae, Choongsik;Lim, Byeungjun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.1
    • /
    • pp.101-107
    • /
    • 2019
  • This study conducted a simulation to observe the performance of a multi-turbocharged gasoline internal combustion engine for a high-altitude long-endurance unmanned aerial vehicle (HALE UAV). The WAVE 1-D engine simulation software from Ricardo was used for the engine system modeling and simulation. The specifications of a 2.4-L four cylinder gasoline engine from commercial vehicles and maps of commercial vehicle turbochargers were applied to the multi-stage turbocharged engine system model. Three turbochargers and intercoolers were installed in series for the appropriate intake of pressure for the gasoline engine at a high altitude of 60,000 ft. There was one wastegate for the turbochargers. The operability of the engine system was analyzed via this simulation model.

The Geomorphological Development of Marine Terraces UHS (upper higher surface) and HHS (high higher surface) around Yeondae-san, Gampo-Eup, Southeastern Coast of Korea (한국 남동해안 감포 연대산 지역 해안단구 상고위면과 고고위면 지형발달)

  • Hwang, Sangill;Yoon, Soon-Ock
    • Journal of The Geomorphological Association of Korea
    • /
    • v.27 no.4
    • /
    • pp.13-28
    • /
    • 2020
  • In this study, the distribution and topographic development of marine terraces, UHS (Upper Higher Surface) and HHS (High Higher Surface) at Yeondae-san area, Gampo-eup were discussed. We critically examined on the substance of the Yeongdong-myeon (a low-lying erosion surface) in the east coast of Korea. In study area, UHS including UHS-246m, UHS-241m, UHS-235m, UHS-220m, UHS-210m and UHS-220 is found on the highest altitude among the marine terraces in Korea. The existence of UHS requires new interpretation on topographical surface like Yeongdong-myeon, which has been commonly accepted as a theory in the society of Korean Geography. Since UHS is distributed continuously ascending on the altitude of HHS, the period of formation should be understood in the same context. And UHS of paleo-shoreline 246m has been estimated to be formed about 1.5 million years ago.

The Study on the Class Difficulty of Elementary Pre-service Teachers' Seasonal Change Unit (초등예비교사의 계절변화 단원에 대한 수업곤란도 연구)

  • Soon-shik Kim
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.16 no.3
    • /
    • pp.340-350
    • /
    • 2023
  • This study analyzed the difficulty level of class on the seasonal change unit for 84 students at a university of education. The conclusions of this study are as follows. First, if we first present the four topics that make up the seasonal changes in elementary science, the subjects that have the greatest difficulty in teaching for prospective elementary school teachers are 'Why do seasonal changes occur?' (Teaching difficulty level 4.05), 'The sun changes depending on the season' What is the difference between the southern altitude and the length of day and night?' (difficulty level of class, 3.12), 'What is the relationship between the altitude of the sun, length of shadow, and temperature during the day?' (difficulty level of class, 2.85), 'How does the temperature change depending on the season?' (class difficulty level 2.80). As a result, in the elementary science season change unit, the class on the four topics 'Why do seasons change?', which is classified as a class topic that requires the concept of spatial perception, showed a higher level of class difficulty than other units. Second, in the seasonal change unit, various factors of class difficulty appeared depending on the class topic. When pre-service elementary school teachers look at the factors that make class difficult when teaching a lesson on seasonal changes in order of frequency, 42 (50%) said 'Experimental instruction for comparing the altitude of solar masculine according to the tilt of the axis of rotation', followed by 'Solar masculine'. 38 people (45%) answered 'Difficulty in explaining mid-high altitude and the length of day and night', 27 people (32%) answered 'Difficulty in explaining the concept of mid-high altitude', and 24 people (32%) answered 'Difficulty in explaining seasonal changes in the sun's position.' 29%), 20 people (24%) said 'Explain the reasonable reason why the height of the light should be adjusted when measuring the solar altitude', and 16 people (19%) said 'It is difficult to explain the reason for the discrepancy between the solar altitude and the maximum temperature'. ), 'difficulties in measuring sand (ground) temperature' were mentioned by 12 people (14%). Third, when analyzing the factors of class difficulty, there were more curriculum factors than teacher factors. In this context, the exploratory activities on 'Why do seasonal changes occur?', the fourth topic of the seasonal change unit in which elementary school pre-service teachers showed the greatest difficulty in teaching, need improvement in terms of the curriculum.

Impact of Environmental Factors and Altitude on Growth and Reproductive Characteristics of Teak (Tectona grandis Linn. f.) in Southern India

  • Krishnamoorthy, M.;Palanisamy, K.;Francis, A.P.;Gireesan, K.
    • Journal of Forest and Environmental Science
    • /
    • v.32 no.4
    • /
    • pp.353-366
    • /
    • 2016
  • The effect of different environmental conditions and altitudes on the growth and reproductive characteristics in 12 teak plantations at 4 different blocks (Cauvery canal bank, Topslip and Parambikulam (Tamil Nadu), Nilambur and Wayanad (Kerala) of Southern India was investigated. The annual rainfall and mean monthly temperature of the study areas varied significantly from 1390 to 3188 mm and 16 to $38^{\circ}C$ respectively. The teak plantations in Cauvery canal bank which grow in continuous moisture condition (8-10 months) retain the leaf for longer period due to moisture resulting continuous supply of photosynthates leads to fast and outstanding growth. The girth at breast height (GBH) of 34-years-old tree in canal area was similar to that of 40 to 49-years-old trees in other locations, indicating that teak plantations with regular watering and silvicultural practices may be harvested at the age of 30 years. The leaf fall, flowering and fruiting showed significant variations in different teak plantations due to environmental factors and altitudes. It was found that increase of rainfall enhances number of flowers in the inflorescence in teak. Tholpatty (block-IV) showed more flowering in a inflorescence (3,734-3,744) compared to other plantations (1,678-3,307). Flowering in Nilambur and Wayanad coincided with heavy rainfall resulting low fruitset (1.1-2.3%) probably heavy rainfall ensuing restriction of pollinators for effective pollination. On the other hand, flowering in Cauvery canal bank (Block-I) was not coincided with high rainfall exhibited high fruitset (2-3%). About 66 to 76% of the fruits in different plantations were empty, and it is one of the main reasons for poor germination in teak. The seeds of Topslip and Parambikulam (Block-II) showed higher seed weight, maximum seed filling and good germination indicating that the environmental factors and altitude play significant role in fruit setting and seed filling in teak. In addition, the teak plantations in Topslip and Parambikulam showed good growth suggesting that plantations in the altitude range of approximately 550-700 m may be suitable for converting into seed production areas for production of quality seeds.

Studies on Inhibiting Floral Induction of Angelica gigas NAKAI in the Hilly Altitude Area (중.산간지대에서 참당귀의 화성억제에 관한 연구)

  • 이승필
    • Korean Journal of Plant Resources
    • /
    • v.8 no.1
    • /
    • pp.55-62
    • /
    • 1995
  • This study was carried out to investigate the effects of floral inhibition of Angelica gigas NAKAI in the hilly altitude located in the Northern Gyeongbuk Province from Feb. 1992 to 1994. The results obtained were as follows: As the cultivated areas are high, rate of bolting was significantly decreased, having high yield, good growth, and medicinal quality. It is considered that the optimal cultivating area was at least above 600m altitude. In the hilly altitude, the more shorten nursery period was, the more decreased rate of bolting was, it results in decreased yield, having no significant differences in contents such as extract and decursin. In bolting response from temperature treatment of the seedlings, treatment of temperature was significantly decreased floral induction, but rate of establishment was decreased by decayed root. Bolting rate at different organic resources has more reduced in single fertilization than that of in organic application, but among organic resources, compost of rice straw has the lowest bolting rate. As a result, yield and medicinal qualities at various organic resources were increased in application of organic resources which was no considerable tendency among organic resources.

  • PDF

Corona generated Radio Interference of the 750 kV AC Bundle Conductors in Sandy and Dusty Weather Condition in the High Altitude Area

  • Liu, Yun-Peng;Zhu, Lei;Lv, Fang-Cheng;Wan, Bao-Quan;Pei, Chun-Ming
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1704-1711
    • /
    • 2014
  • Sandy and dusty weather condition often occurs in the high altitude areas of China, which may greatly influence the corona generated radio interference (RI) characteristics of the bundle conductors of 750 kV AC power transmission lines. Corona generated RI of the conductors of the 750 kV AC power transmission lines used in practice is measured by EMI receiver with a coupling circuit and a coupling capacitor connected between the high voltage side and the earth side in fine and sandy and dusty condition. The measuring frequency is 0.5 MHz, and the quasi-peak detection is used. RI excitation function is calculated based on the corona RI current measured by the EMI receiver. Corona generated RI characteristics were analyzed from sand concentration and sand particle size. The test result shows that the corona generated RI excitation function is influenced by the sandy and dusty condition. Corona discharge of the conductors is more serious in sandy and dusty condition with an ultraviolet (UV) detector. Corona generated RI excitation function increases with the increase of sand concentration and also increases with the increase of particle size.

Classification of the Damaged Areas in the DMZ (Demilitarized zone) by Location Environments (입지 환경 인자를 이용한 DMZ 남측 철책선 주변 훼손지 유형화)

  • Bak, Gi-Ppeum;Kim, Sang-Jun;Lee, Ah-Young;Kim, Dong-Hak;Yu, Seung-Bong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.24 no.2
    • /
    • pp.71-84
    • /
    • 2021
  • Restoration of DMZ has come up with the discussion on the peaceful use of the DMZ and the conservation plan of the army. In this study, we aim to identify soil characteristics of 108 sites to figure out environmental conditions around the iron fence of DMZ where vegetation has been removed repeatedly. Based on the soil characteristics and climate variables, hierarchy clustering was performed to categorize sites. As a result, we categorized 108 sites into 4 types: middle elevation region, lowland, East coast lowland, other areas. Group of 'other area' is only high in nutrient and clay proportion. Others are in igneous rock and metamorphic rocks with a high proportion of sand and lower nutrients than the optimum range of growth in Korean forest soil. The middle elevation region has a high altitude, low temperature. The east coast lowland has a high temperature in January and low precipitation. The lowland has a low altitude and high temperature. This category provides the environmental condition around the DMZ fence and can be used to select plants for restoration. The restoration project around the DMZ iron fence should satisfy the security of military plans, which means that functional restoration is prior to ecological restoration such as vegetation management under a power line. Additionally, improvement of soil quality and surface stability through restoration projects is required to enhance the resilience of the ecosystem in DMZ.