
J Electr Eng Technol Vol. 9, No. 5: 1704-1711, 2014 
http://dx.doi.org/10.5370/JEET.2014.9.5.1704 

 1704 

Corona generated Radio Interference of the 750 kV AC Bundle 
Conductors in Sandy and Dusty Weather Condition 

in the High Altitude Area 
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Abstract – Sandy and dusty weather condition often occurs in the high altitude areas of China, which 
may greatly influence the corona generated radio interference (RI) characteristics of the bundle 
conductors of 750 kV AC power transmission lines. Corona generated RI of the conductors of the 750 
kV AC power transmission lines used in practice is measured by EMI receiver with a coupling circuit 
and a coupling capacitor connected between the high voltage side and the earth side in fine and sandy 
and dusty condition. The measuring frequency is 0.5 MHz, and the quasi-peak detection is used. RI 
excitation function is calculated based on the corona RI current measured by the EMI receiver. Corona 
generated RI characteristics were analyzed from sand concentration and sand particle size. The test 
result shows that the corona generated RI excitation function is influenced by the sandy and dusty 
condition. Corona discharge of the conductors is more serious in sandy and dusty condition with an 
ultraviolet (UV) detector. Corona generated RI excitation function increases with the increase of sand 
concentration and also increases with the increase of particle size.  
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1. Introduction 
 
The electromagnetic interference problem is one of 

the key technical problems in the construction of the 
extra-high voltage (EHV) and ultra-high voltage (UHV) 
power transmission lines. Corona generated RI of the 
transmission line plays a key role in the conductor type 
selection, conductor arrangement method, determining the 
height of the conductor to the ground, and determining the 
height of the tower [1-3].  

Many studies were done on the radio interference of the 
UHV / EHV power transmission line conductors before 
1990s. In 1970s, BPA Corporation in America and CIGRE 
put forward the RI excitation function of the single 
conductor in the heavy rain condition [4-5]. CISPR put 
forward the RI excitation function of the bundle conductors 
with bundle number more than 4 in the heavy rain 
condition [6]. IREQ in Canada and EPRI in America 
utilized corona cages and test lines to study the corona 
effect of the AC power transmission lines and gained the 
empirical formula of the corona generated RI excitation 
function based on the large quantities of experimental data 

[7-8]. After 1980s, CRIEPI in Japan used the UHV and 
EHV corona cages to study the radio interference of the 
UHV DC power transmission line conductors [9].  

Air density has closely relationship with the corona 
onset characteristics of conductors. The air density in high 
altitude area is lower, corona discharge occurs more easily 
in high altitude areas, and the electromagnetic environment 
problem is more serious [10]. On the basis, the sandy 
and dusty weather conditions may further increase the 
corona generated RI of the 750kV power transmission line 
conductors. 

Research on the operating of power system in sandy 
and dusty condition mainly focused on the breakdown 
characteristic of the air gaps and the surface flashover 
characteristics of the insulators. The research results 
show that sandy and dusty condition will influence the 
breakdown characteristics of the air gaps, and the influence 
degree is related to the distance between the electrodes, the 
electrode geometry, the particle sizes; flashover voltage of 
the insulator is lower in sandy and dusty condition [11-14]. 
Besides, in [15], the electric field distribution near the 
power transmission lines and electric tower was calculated. 
The result shows that the sand particles will influence the 
surface electric filed strength of the grading ring and 
bundle conductors. Researchers did research on comparing 
the corona characteristic differences between long term 
operating transmission line conductors and new conductor, 
the test result shows that corona discharge of the long 
operating conductors is stronger, and the corona generated 
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RI and audible noise are larger than that of the new 
conductors [16]. 

Under both high altitude and sandy and dusty weather 
conditions, there is no relevant research on the corona- 
generated RI of the 750 kV bundle conductors. The 
altitudes of the EHV AC power lines are mainly higher 
than 1000 m in northwest China, and the altitudes of some 
areas are higher than 3000 m (for example Qing-Zang 
Plateau). Most regions in northwest China are experiencing 
sandy and dusty weather condition especially in spring. 
The number of days that sandy and dusty weather condition 
occur would exceed 20 in some areas, so studying on 
corona generated RI of the 750 kV AC power transmission 
line conductors in the high altitude and sandy and dusty 
condition is of practical significance. 

 
 

2. Corona Generated RI Test 
 

2.1 Corona generated RI test method in the corona 
cage 

 
The corona generated RI test system in sandy and dusty 

condition is composed of two parts: sandy and dusty 
condition simulation system and radio interference test 
system. The RI test method and the parameters of the test 
equipments could be determined according to [17]. There 
are two ways to measure RI of the transmission line 
conductor: one is to measure the emitted field and the other 
is to measure the conducted quantities (current or voltage) 
with a prescribed test circuit. For the practical transmission 
line, the former method is generally used, and the loop 
antenna and EMI receiver are used to measure the corona 
generated RI field. 

In corona cage, the conducted radio interference current 
of the conductor is measured by the EMI receiver, and the 
real RI interference could be gained with the excitation 
function method. The test equipments include coupling 
circuit, EMI receiver, wave trapper, and coaxial cable. The 
coupling circuit could be connected in two connection ways: 
one is connecting the high voltage coupling capacitor and 
coupling circuit between the high voltage test conductor 
and the ground; the other is connecting the coupling 

circuit between the corona cage wall and the ground. The 
connection method of the RI coupling circuit in this paper 
is shown in Fig. 1. In the figure, 1 is the test power source, 
2 is the capacitive voltage divider, 3 is the wave trapper, 4 
is the radio interference meter, and 5 is the corona cage. 
The parameter of the measuring circuit is determined 
according to [17], and in the test the matching impedance 
R2 is 50 W  the series impedance R1 is 275 W , the 
capacitance of C is 4000 pF, and the input impedance of 
EMI receiver R0 is 50 W . The measuring terminal 
impedance which consists of an input impedance of EMI 
receiver R2 and R0 is 25W . In the reference frequency, the 
value of L is larger than 1 mH. 

The radio interference meter is the calibrated FCKL 1528 
made by Schwarzbeck Mess Corporation. The reference 
frequency is 0.5 MHz, and quasi-peak detection method is 
used. 

 
2.2 Movable corona cage 

 
Corona generated RI data are generally gained from the 

conductor in a short test line or in a corona cage. Also, a 
corona cage has the following advantages: reproducing the 
corona discharge status with a much lower test voltage, 
lower investment, convenience to transport (especially for 
high altitude test) and convenience in adjusting the 
experiment conditions. The parameters of the corona cage 
in this test are: measuring part 8 m, shielding part 1 m, and 

 
Fig. 1. Schematic diagram of radio interference measurement 

 

 
Fig. 2. Movable corona cage 
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side length of the square section 6 m. Corona loss, RI, and 
audible noise generated by corona discharge of the bundle 
conductors of different dimensions and structures in 
different altitudes could be done using the cage in this 
study, as shown in Fig. 2. 

 
2.3 Test arrangement 

 
The test arrangement is shown in Fig. 3. The altitude 

of the test spot (Haibei Tibetan Autonomous Prefecture, 
Qinghai Province) is 3042 m. The parameters of the series 
resonance transformer are: rated input voltage 380 V, rated 
output voltage 600 kV, and apparent power 1200 kVA. 

Two capacitors in series connection are used as the 
coupling capacitors and the withstand voltage is 400 kV. 

 
2.4 Corona generated RI excitation function 

 
RI excitation function can characterize corona discharge, 

which takes into account the nature of corona currents, 
depends only on space charges and electric field distribution 
and is not influenced by conductor parameters or line 
configuration. RI excitation function has the advantage of 
independent of the conductor capacitance per unit length. 
The excitation function which is related to the current in 
the bundle conductor could be calculated by the following 
Formula 1 [5]. 

 

 02I
C

G = ×
pe

  (1) 

 
Where, G  is the excitation function in 1/ 2/A mm ; 
I is high frequency current injected into the bundle 

conductors in 1/ 2/A mm ;  
C is the unit length capacitance between the bundle 

conductor and the corona cage. 
G (in dB) in this test could be calculated in reference [18] 
 

 020 lg( ) 20 lg(2 / )RI eqU Z l CpeG = - × × + ×   (2) 
 

Where, the unit of G  becomes in dB/1 1/ 2/A mm ;  

RIU  is the radio interference voltage recorded by the 
receiver in dB/1 Vm ;  

Zeq is the equivalent impedance of the measure circuit 
(W ); l is the length measurement of the corona cage. 

 
 

3. Sandy and Dusty Condition Simulation  
in the High Altitude Area 

 
3.1 Sandy and dusty condition simulation system 

 
In order to simulate sand particles blowing across the 

conductors, a sandy and dusty condition simulation system 
is established. The main parts of the system are shown in 
Fig. 4. Fig. 5 is the actual figure of the system.  

6 axial industrial fans, divided into 3 groups, are taken 
as the wind sources, which can generate wind with enough 
speed. The rated air volume is 65000 m3/h, and rated total 
pressure is 4000 Pa. The electric power is supplied by a 
power source of 380 V. Elbow structure is taken in 
designing the wind tunnels, which can save the land that 
this sandy and dusty simulation system covers and ensure 
the security of the system. 

 

 
Fig. 4. Schematic diagram of the sandy and dusty condition 

simulation system 
 

 
Fig. 5. Actual figure of the system 

 
Fig. 3. Test arrangement 
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Sand particles are screened into different particle sizes, 
and drop into the wind tunnel from the spiral sand particle 
feeder. As Fig. 4 shows, the functions of the cyclones in the 
upper wind tunnel is generating a whirl airflow which can 
enlarger the diffuse range of sand particles. 

The function of the converter is to control the rotating 
speed of the fans and the speed of the feeder, which will in 
turn change the wind speed and sand concentration. Finally 
the wind speeds generating by this system are 5 m/s-16 m/s 
and the sand particle concentration of this system is 133 
mg/m3 and above. 

 
3.2 Selection of sandy and dusty parameters 

 
Three main factors that influence the intensity of the 

sandy and dusty conditions are: the wind speed, the 
concentration of the sand, and the particle sizes of the sand. 
Different levels of the sandy and dusty weather conditions 
are simulated by combining the parameters above. 

Sand particles could not be blown to the air without 
enough wind speed, which is determined according to the 
criterion of different levels of sandy and dusty weather 
conditions in northwest of China, as shown in Table 1 [19].  

Sand particles are purchased from the local area not far 
from the 750 kV power transmission lines in northwestern 
China, the sizes of the sand particles are referred to [20], in 
which the particle sizes of the sand are found to be <0.2 
mm in sandy and dusty condition, and the sand particle size 
could be higher in extremely serious sand storm. Different 
sizes of sand particles are separated by industrial sieves. 
After taking the sieving difficulty into consideration, the 
final three grades of sand particle sizes are: <0.125 mm, 
0.125-0.25 mm, 0.25-0.5 mm.  

Sand concentration is also an important parameter of 
the sandy and dusty weather condition. The sand con-
centration and visibility of different levels of sandy and 

dusty weather conditions were studied in [21-24]. The 
sand concentrations in the test are chosen as 200 mg/m3, 
330 mg/m3, and 460 mg/m3. Sandy and dusty condition 
simulation effect is presented in Fig. 6. 

Salt contents of the sand of different particles sizes are 
shown in Table 2. Salt content of the sand particles in the 
test is measured with similar method as measuring the salt 
content in contaminations of insulators. 

 
Table 2. Salt content of particles in the test 

Particle size  
<0.125 0.125-0.25 0.25-0.5 

Salt content (g/kg) 0.125 0.1 0.115 
 
The ambient humidity and temperature during the test 

were also recorded, as shown in Table 3. 
 

Table 3. Temperature, relative humidity and air temperature  

Conductor Temperature 
(oC) 

Relative humidity 
(%) 

Air pressure 
(kPa) 

LGJ400-50 5.6-9.8 32.5-19.7 70.3 
 
 

4. Test results 
 

4.1 Influence of sand condition on corona discharge 
intensity 

 
Generally, UV corona discharge imager is used to detect 

Table 1. Criterion of the sandy and dusty weahter 

Level Maximum wind speed 
Extra strong Scale 10 and above(25 m/s) 

Strong Scale 8 and above(20 m/s) 
Medium Scale 6 and above(15 m/s) 
Common Scale 4 and above(10 m/s) 

 

 
Fig. 6. Sandy and dusty condition simulation 

 
Fine condition 

 
sandy and dusty condition 

(a) 240kV 

 
Fine condition 

 
sandy and dusty condition 

(b) 280kV 

 
Fine condition 

 
sandy and dusty condition 

(c) 320kV 
Fig. 7. Comparison of corona discharge intensity in different 

conditions 
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the discharge intensity of the conductors. In this study, the 
UV corona discharge imager (DayCor ‘Superb’ corona 
module, made in Israel) is used to test the corona discharge 
intensity in sandy and dusty condition and in fine condition. 
As could be seen in Fig. 7, the photon counting results are 
higher in sandy and dusty condition, which could prove 
that corona discharge become more serious and corona 
discharge occurs in a lower voltage in sandy and dusty 
condition. Sand particle parameters in the corona 
discharge intensity test are: sand concentration 460 mg/m3 
and particle size 0.25-0.5 mm. 

 
4.2 Influence of sand concentration on corona 

generated RI excitation function 
 
The stranded conductors used in the test are LGJ400-50 

(bundle space 400 mm), the diameter of which is 27.63mm. 
The abscissas of the figures are the maximum surface 
electric field strengths of the LGJ400-50 conductors, which 
are calculated with the finite element method using the 
software ANSYS. When the voltage is 100 kV (effective 
value) the maximum surface electric field strength of the 
smooth conductors, which have the same diameters as the 
stranded ones, is 6.06 kV/cm. In the sandy and dusty 
condition, the wind speed is 16 m/s. Sand particle sizes 
are <0.125 mm, 0.125-0.25 mm, and 0.25-0.5 mm. Sand 
concentrations are 200 mg/m3, 330mg/m3 and 460 mg/m3. 
The variations of corona generated RI of the test conductor 
with the test electric field strength are shown in Fig. 8. The 
operating electric field strength is generally 80-85% of 
the corona onset electric field strength of the power line 
conductor [25], so the operating electric field strength 
will mostly not exceed 17 kV/cm with the method in [26]. 
So in the range of operating electric field strength, the 
corona generated RI of the conductors of the 750 kV power 
transmission lines increase by 6-15 dB. As shown in Fig. 
8, the corona generated RI increases with the increase of 
the sand concentration. With the increase of electric field 
strength, the differences of the RI with different sand 
concentrations tend to decrease. 

 
4.3 Influence of sand particle size on corona generated 

RI 
 
Sand particle sizes considered in this work are <0.125 

mm, 0.125-0.25 mm, and 0.25-0.5 mm. Fig. 9 show the 
influence of particle size on corona generated RI excitation 
function when the sand concentration is 200 mg/m3. 
Similar tendencies are found in other two sand con-
centrations. As shown in Fig. 9, the corona generated RI 
excitation function increases with the increase in particle 
sizes. For LGJ400-50 conductor, when the electric field is 
16 kV/cm, the corona generated RI excitation functions are 
respectively 32dB, 35.25dB and 37.66dB with the increase 
of particle size. With the increase of the electric field 
strength, the corona generated RI excitation function in the 
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Fig. 8. Influence of sand concentration on RI excitation 
function of LGJ400-50 

 

 
Fig. 9. Influence of particle size on corona generated RI 

excitation function of LGJ400-50 conductor 
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sandy and dusty condition of different particle sizes tend to 
be close. 

 
 

5. Discussion of the test results 
 
In high altitude regions, corona-generated RI is first 

influenced by the altitude factor, the corona generated RI 
of the bundle conductors increase 3.13 dB with the altitude 
1000 m higher [10]. And then corona generated RI is 
influenced by the particle factor in the sandy and dusty 
condition. In this paper, sandy and dusty condition is found 
to have impact on the corona generated RI of the 750 kV 
AC bundle stranded conductor. Corona discharge in sandy 
and dusty condition is discharge occurs in solid and gas 
mixtures. The possible explanations of this kind of 
discharge may be expressed as following.  

Calculating the electric field strength distribution in the 
vicinity of the conductor with the presence of insulating 
particles is the essential step in analyzing the corona 
discharge process. Maximum electric field strength is 
calculated with different permittivity, particle sizes and 
distances between particle and conductor [27]. With the 
increase of sand concentration, there are more sand 
particles in space. Thus, there are more electric filed 
distorted points on the surface of the conductor. And larger 
particles will have more serious influence on electric field 
strength distribution near the conductor. So the increasing 
of corona generated RI with the increase of particle size 
and concentration could be explained from the electric 
field strength point of view in certain extent. There will 
be positive and negative ions produced in the corona 
discharge process, and sand particles will become 
charging in this process [28]. For example, sand particles 
will acquire positive ions in the positive half circle of the 
voltage. Then in the next negative half circle, sand 
particles with positive ions in the vicinity of the conductor 
will cause more serious electric field distortion than the 
sand with no ions. In addition, when the electric filed 
strength is strong enough, sand particles may produce 
momentary discharge, and this can increase the measured 
radio interference. Corona discharge mechanism of the 
conductor in solid-gas mixtures (such as in sandy and dusty 
weather condition) is complex, and needs extensive 
research both in the experiment aspect and in simulation 
aspect in the future. 

 
 

6. Conclusion 
 
Corona discharge of transmission line conductor is more 

serious in sandy and dusty condition. In the simulated sandy 
and dusty condition, the corona generated RI excitation 
function is larger than that in no sand condition, and the 
corona generated RI increases with the increase in sand 
particle size and increases with the increase in sand 

concentration. In the practical range of operating electric 
field strengths, the corona generated RI excitation function 
of the 750 kV AC transmission line conductors increases 
by 6-15 dB. 
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