• Title/Summary/Keyword: high waves

Search Result 1,503, Processing Time 0.035 seconds

Spatial Distribution of Urban Heat and Pollution Islands using Remote Sensing and Private Automated Meteorological Observation System Data -Focused on Busan Metropolitan City, Korea- (위성영상과 민간자동관측시스템 자료를 활용한 도시열섬과 도시오염섬의 공간 분포 특성 - 부산광역시를 대상으로 -)

  • HWANG, Hee-Soo;KANG, Jung Eun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.3
    • /
    • pp.100-119
    • /
    • 2020
  • During recent years, the heat environment and particulate matter (PM10) have become serious environmental problems, as increases in heat waves due to rising global temperature interact with weakening atmospheric wind speeds. There exist urban heat islands and urban pollution islands with higher temperatures and air pollution concentrations than other areas. However, few studies have examined these issues together because of a lack of micro-scale data, which can be constructed from spatial data. Today, with the help of satellite images and big data collected by private telecommunication companies, detailed spatial distribution analyses are possible. Therefore, this study aimed to examine the spatial distribution patterns of urban heat islands and urban pollution islands within Busan Metropolitan City and to compare the distributions of the two phenomena. In this study, the land surface temperature of Landsat 8 satellite images, air temperature and particulate matter concentration data derived from a private automated meteorological observation system were gridded in 30m × 30m units, and spatial analysis was performed. Analysis showed that simultaneous zones of urban heat islands and urban pollution islands included some vulnerable residential areas and industrial areas. The political migration areas such as Seo-dong and Bansong-dong, representative vulnerable residential areas in Busan, were included in the co-occurring areas. The areas have a high density of buildings and poor ventilation, most of whose residents are vulnerable to heat waves and air pollution; thus, these areas must be considered first when establishing related policies. In the industrial areas included in the co-occurring areas, concrete or asphalt concrete-based impervious surfaces accounted for an absolute majority, and not only was the proportion of vegetation insufficient, there was also considerable vehicular traffic. A hot-spot analysis examining the reliability of the analysis confirmed that more than 99.96% of the regions corresponded to hot-spot areas at a 99% confidence level.

Evaluation of Health Impact of Heat Waves using Bio-Climatic impact Assessment System (BioCAS) at Building scale over the Seoul City Area (생명기후분석시스템(BioCAS)을 이용한 폭염 건강위험의 검증 - 서울시 건물규모를 중심으로 -)

  • Kim, Kyu Rang;Lee, Ji-Sun;Yi, Chaeyeon;Kim, Baek-Jo;Janicke, Britta;Holtmann, Achim;Scherer, Dieter
    • Journal of Environmental Impact Assessment
    • /
    • v.25 no.6
    • /
    • pp.514-524
    • /
    • 2016
  • The Bio-Climatic impact Assessment System, BioCAS was utilized to produce analysis maps of daily maximum perceived temperature ($PT_{max}$) and excess mortality ($r_{EM}$) over the entire Seoul area on a heat wave event. The spatial resolution was 25 m and the Aug. 5, 2012 was the selected heat event date. The analyzed results were evaluated by comparing with observed health impact data - mortality and morbidity - during heat waves in 2004-2013 and 2006-2011,respectively. They were aggregated for 25 districts in Seoul. Spatial resolution of the comparison was equalized to district to match the lower data resolution of mortality and morbidity. Spatial maximum, minimum, average, and total of $PT_{max}$ and $r_{EM}$ were generated and correlated to the health impact data of mortality and morbidity. Correlation results show that the spatial averages of $PT_{max}$ and $r_{EM}$ were not able to explain the observed health impact. Instead, spatial minimum and maximum of $PT_{max}$ were correlated with mortality (r=0.53) and morbidity (r=0.42),respectively. Spatial maximum of $PT_{max}$, determined by building density, affected increasing morbidity at daytime by heat-related diseases such as sunstroke, whereas spatial minimum, determined by vegetation, affected decreasing mortality at nighttime by reducing heat stress. On the other hand, spatial maximum of $r_{EM}$ was correlated with morbidity (r=0.52) but not with mortality. It may have been affected by the limit of district-level irregularity such as difference in base-line heat vulnerability due to the age structure of the population. Areal distribution of the heat impact by local building and vegetation, such as spatial maximum and minimum, was more important than spatial mean. Such high resolution analyses are able to produce quantitative results in health impact and can also be used for economic analyses of localized urban development.

Simultaneous Multiple Transmit Focusing Method with Orthogonal Chirp Signal for Ultrasound Imaging System (초음파 영상 장치에서 직교 쳐프 신호를 이용한 동시 다중 송신집속 기법)

  • 정영관;송태경
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.1
    • /
    • pp.49-60
    • /
    • 2002
  • Receive dynamic focusing with an array transducer can provide near optimum resolution only in the vicinity of transmit focal depth. A customary method to increase the depth of field is to combine several beams with different focal depths, with an accompanying decrease in the frame rate. In this Paper. we Present a simultaneous multiple transmit focusing method in which chirp signals focused at different depths are transmitted at the same time. These chirp signals are mutually orthogonal in a sense that the autocorrelation function of each signal has a narrow mainlobe width and low sidelobe levels. and the crossorelation function of any Pair of the signals has values smaller than the sidelobe levels of each autocorrelation function. This means that each chirp signal can be separated from the combined received signals and compressed into a short pulse. which is then individually focused on a separate receive beamformer. Next. the individually focused beams are combined to form a frame of image. Theoretically, any two chirp signals defined over two nonoverlapped frequency bands are mutually orthogonal In the present work. however, a tractional overlap of adjacent frequency bands is permitted to design more chirp signals within a given transducer bandwidth. The elevation of the rosscorrelation values due to the frequency overlap could be reduced by alternating the direction of frequency sweep of the adjacent chirp signals We also observe that the Proposed method provides better images when the low frequency chirp is focused at a near Point and the high frequency chirp at a far point along the depth. better lateral resolution is obtained at the far field with reasonable SNR due to the SNR gain in Pulse compression Imaging .

Real-Time 3D Ultrasound Imaging Method Using a Cross Array Based on Synthetic Aperture Focusing: II. Linear Wave Front Transmission Approach (합성구경 기반의 교차어레이를 이용한 실시간 3차원 초음파 영상화 기법 : II. 선형파면 송신 방법)

  • 김강식;송태경
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.5
    • /
    • pp.403-414
    • /
    • 2004
  • In the accompanying paper, we proposed a real. time volumetric imaging method using a cross array based on receive dynamic focusing and synthetic aperture focusing along lateral and elevational directions, respetively. But synthetic aperture methods using spherical waves are subject to beam spreading with increasing depth due to the wave diffraction phenomenon. Moreover, since the proposed method uses only one element for each transmission, it has a limited transmit power. To overcome these limitations, we propose a new real. time volumetric imaging method using cross arrays based on synthetic aperture technique with linear wave fronts. In the proposed method, linear wave fronts having different angles on the horizontal plane is transmitted successively from all transmit array elements. On receive, by employing the conventional dynamic focusing and synthetic aperture methods along lateral and elevational directions, respectively, ultrasound waves can be focused effectively at all imaging points. Mathematical analysis and computer simulation results show that the proposed method can provide uniform elevational resolution over a large depth of field. Especially, since the new method can construct a volume image with a limited number of transmit receive events using a full transmit aperture, it is suitable for real-time 3D imaging with high transmit power and volume rate.

Initial results from spatially averaged coherency, frequency-wavenumber, and horizontal to vertical spectrum ratio microtremor survey methods for site hazard study at Launceston, Tasmania (Tasmania 의 Launceston 시의 위험 지역 분석을 위한 공간적 평균 일관성, 주파수-파수, 수평과 수직 스펙트럼의 비율을 이용한 상신 진동 탐사법의 일차적 결과)

  • Claprood, Maxime;Asten, Michael W.
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.1
    • /
    • pp.132-142
    • /
    • 2009
  • The Tamar rift valley runs through the City of Launceston, Tasmania. Damage has occurred to city buildings due to earthquake activity in Bass Strait. The presence of the ancient valley, the Tamar valley, in-filled with soft sediments that vary rapidly in thickness from 0 to 250mover a few hundreds metres, is thought to induce a 2D resonance pattern, amplifying the surface motions over the valley and in Launceston. Spatially averaged coherency (SPAC), frequency-wavenumber (FK) and horizontal to vertical spectrum ratio (HVSR) microtremor survey methods are combined to identify and characterise site effects over the Tamar valley. Passive seismic array measurements acquired at seven selected sites were analysed with SPAC to estimate shear wave velocity (slowness) depth profiles. SPAC was then combined with HVSR to improve the resolution of these profiles in the sediments to an approximate depth of 125 m. Results show that sediments thicknesses vary significantly throughout Launceston. The top layer is composed of as much as 20m of very soft Quaternary alluvial sediments with a velocity from 50 m/s to 125 m/s. Shear-wave velocities in the deeper Tertiary sediment fill of the Tamar valley, with thicknesses from 0 to 250m vary from 400 m/s to 750 m/s. Results obtained using SPAC are presented at two selected sites (GUN and KPK) that agree well with dispersion curves interpreted with FK analysis. FK interpretation is, however, limited to a narrower range of frequencies than SPAC and seems to overestimate the shear wave velocity at lower frequencies. Observed HVSR are also compared with the results obtained by SPAC, assuming a layered earth model, and provide additional constraints on the shear wave slowness profiles at these sites. The combined SPAC and HVSR analysis confirms the hypothesis of a layered geology at the GUN site and indicates the presence of a 2D resonance pattern across the Tamar valley at the KPK site.

Study of Coherent High-Power Electromagnetic Wave Generation Based on Cherenkov Radiation Using Plasma Wakefield Accelerator with Relativistic Electron Beam in Vacuum (진공 내 상대론적인 영역의 전자빔을 이용한 플라즈마 항적장 가속기 기반 체렌코프 방사를 통한 결맞는 고출력 전자파 발생 기술 연구)

  • Min, Sun-Hong;Kwon, Ohjoon;Sattorov, Matlabjon;Baek, In-Keun;Kim, Seontae;Hong, Dongpyo;Jang, Jungmin;Bhattacharya, Ranajoy;Cho, Ilsung;Kim, Byungsu;Park, Chawon;Jung, Wongyun;Park, Seunghyuk;Park, Gun-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.6
    • /
    • pp.407-410
    • /
    • 2018
  • As the operating frequency of an electromagnetic wave increases, the maximum output and wavelength of the wave decreases, so that the size of the circuit cannot be reduced. As a result, the fabrication of a circuit with high power (of the order of or greater than kW range) and terahertz wave frequency band is limited, due to the problem of circuit size, to the order of ${\mu}m$ to mm. In order to overcome these limitations, we propose a source design technique for 0.1 THz~0.3 GW level with cylindrical shape (diameter ~2.4 cm). Modeling and computational simulations were performed to optimize the design of the high-power electromagnetic sources based on Cherenkov radiation generation technology using the principle of plasma wakefield acceleration with ponderomotive force and artificial dielectrics. An effective design guideline has been proposed to facilitate the fabrication of high-power terahertz wave vacuum devices of large diameter that are less restricted in circuit size through objective verification.

Edge to Edge Model and Delay Performance Evaluation for Autonomous Driving (자율 주행을 위한 Edge to Edge 모델 및 지연 성능 평가)

  • Cho, Moon Ki;Bae, Kyoung Yul
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.191-207
    • /
    • 2021
  • Up to this day, mobile communications have evolved rapidly over the decades, mainly focusing on speed-up to meet the growing data demands of 2G to 5G. And with the start of the 5G era, efforts are being made to provide such various services to customers, as IoT, V2X, robots, artificial intelligence, augmented virtual reality, and smart cities, which are expected to change the environment of our lives and industries as a whole. In a bid to provide those services, on top of high speed data, reduced latency and reliability are critical for real-time services. Thus, 5G has paved the way for service delivery through maximum speed of 20Gbps, a delay of 1ms, and a connecting device of 106/㎢ In particular, in intelligent traffic control systems and services using various vehicle-based Vehicle to X (V2X), such as traffic control, in addition to high-speed data speed, reduction of delay and reliability for real-time services are very important. 5G communication uses high frequencies of 3.5Ghz and 28Ghz. These high-frequency waves can go with high-speed thanks to their straightness while their short wavelength and small diffraction angle limit their reach to distance and prevent them from penetrating walls, causing restrictions on their use indoors. Therefore, under existing networks it's difficult to overcome these constraints. The underlying centralized SDN also has a limited capability in offering delay-sensitive services because communication with many nodes creates overload in its processing. Basically, SDN, which means a structure that separates signals from the control plane from packets in the data plane, requires control of the delay-related tree structure available in the event of an emergency during autonomous driving. In these scenarios, the network architecture that handles in-vehicle information is a major variable of delay. Since SDNs in general centralized structures are difficult to meet the desired delay level, studies on the optimal size of SDNs for information processing should be conducted. Thus, SDNs need to be separated on a certain scale and construct a new type of network, which can efficiently respond to dynamically changing traffic and provide high-quality, flexible services. Moreover, the structure of these networks is closely related to ultra-low latency, high confidence, and hyper-connectivity and should be based on a new form of split SDN rather than an existing centralized SDN structure, even in the case of the worst condition. And in these SDN structural networks, where automobiles pass through small 5G cells very quickly, the information change cycle, round trip delay (RTD), and the data processing time of SDN are highly correlated with the delay. Of these, RDT is not a significant factor because it has sufficient speed and less than 1 ms of delay, but the information change cycle and data processing time of SDN are factors that greatly affect the delay. Especially, in an emergency of self-driving environment linked to an ITS(Intelligent Traffic System) that requires low latency and high reliability, information should be transmitted and processed very quickly. That is a case in point where delay plays a very sensitive role. In this paper, we study the SDN architecture in emergencies during autonomous driving and conduct analysis through simulation of the correlation with the cell layer in which the vehicle should request relevant information according to the information flow. For simulation: As the Data Rate of 5G is high enough, we can assume the information for neighbor vehicle support to the car without errors. Furthermore, we assumed 5G small cells within 50 ~ 250 m in cell radius, and the maximum speed of the vehicle was considered as a 30km ~ 200 km/hour in order to examine the network architecture to minimize the delay.

Development and Application of a Methodologyfor Climate Change Vulnerability Assessment-Sea Level Rise Impact ona Coastal City (기후변화 취약성 평가 방법론의 개발 및 적용 해수면 상승을 중심으로)

  • Yoo, Ga-Young;Park, Sung-Woo;Chung, Dong-Ki;Kang, Ho-Jeong;Hwang, Jin-Hwan
    • Journal of Environmental Policy
    • /
    • v.9 no.2
    • /
    • pp.185-205
    • /
    • 2010
  • Climate change vulnerability assessment based on local conditions is a prerequisite for establishment of climate change adaptation policies. While some studies have developed a methodology for vulnerability assessment at the national level using statistical data, few attempts, whether domestic or overseas, have been made to develop methods for local vulnerability assessments that are easily applicable to a single city. Accordingly, the objective of this study was to develop a conceptual framework for climate change vulnerability, and then develop a general methodology for assessment at the regional level applied to a single coastal city, Mokpo, in Jeolla province, Korea. We followed the conceptual framework of climate change vulnerability proposed by the IPCC (1996) which consists of "climate exposure," "systemic sensitivity," and "systemic adaptive capacity." "Climate exposure" was designated as sea level rises of 1, 2, 3, 4, and 5 meter(s), allowing for a simple scenario for sea level rises. Should more complex forecasts of sea level rises be required later, the methodology developed herein can be easily scaled and transferred to other projects. Mokpo was chosen as a seaside city on the southwest coast of Korea, where all cities have experienced rising sea levels. Mokpo has experienced the largest sea level increases of all, and is a region where abnormal high tide events have become a significant threat; especially subsequent to the construction of an estuary dam and breakwaters. Sensitivity to sea level rises was measured by the percentage of flooded area for each administrative region within Mokpo evaluated via simulations using GIS techniques. Population density, particularly that of senior citizens, was also factored in. Adaptive capacity was considered from both the "hardware" and "software" aspects. "Hardware" adaptive capacity was incorporated by considering the presence (or lack thereof) of breakwaters and seawalls, as well as their height. "Software" adaptive capacity was measured using a survey method. The survey questionnaire included economic status, awareness of climate change impact and adaptation, governance, and policy, and was distributed to 75 governmental officials working for Mokpo. Vulnerability to sea level rises was assessed by subtracting adaptive capacity from the sensitivity index. Application of the methodology to Mokpo indicated vulnerability was high for seven out of 20 administrative districts. The results of our methodology provides significant policy implications for the development of climate change adaptation policy as follows: 1) regions with high priority for climate change adaptation measures can be selected through a correlation diagram between vulnerabilities and records of previous flood damage, and 2) after review of existing short, mid, and long-term plans or projects in high priority areas, appropriate adaptation measures can be taken as per this study. Future studies should focus on expanding analysis of climate change exposure from sea level rises to other adverse climate related events, including heat waves, torrential rain, and drought etc.

  • PDF

Characteristics of Recent Foraminifera and Surface Sediments in Gomso- Bay Tidal Flat, West Coast of Korea: Potential for Paleoenvironmental Interpretations (곰소만 조간대의 현생 유공충과 표층 최적물의 특성: 고환경 해석에 적용 가능성)

  • 우한준;장진호
    • 한국해양학회지
    • /
    • v.30 no.3
    • /
    • pp.184-196
    • /
    • 1995
  • The line-SW is located in the mouth of Gomso Bay (20 Km long and 5-8 Km wide),west coast of Korea. This area is composed of sand flat, mud flat, sand shoal and chenier, The difference of physical, geological and geomorphic conditions in subenvironments of the bay may control and produce distingtive foraminiferal populations and assemblages. This study investigates whether five a priori subenvironments (five local zonations) in Gomso-Bay tidal flat can be distinguished from each other on the basis of total (living plus dead) foraminiferal assemblages. Seventy-four species (67 benthic; 7 planktonic) were recorded in total assemblages of surface sediments from 10 stations. Ammonia beccarii tepida, Discorbis candeiana, Elphidium etigoense and Eponides nipponicus were most dominant species in living and total assemblages. The relative abundance (%) of living population was high at upper flat and decreased from upper to lower flat. The low percentages of living populations in middle to lower flat are probably influenced by the decreasing reproduction of foraminifera caused by high energy condition and addition of dead species from offshore. The occurence of planktonic foraminifera in middle to lower flat (5.3∼6.6%) indicates introduction of planktonic foraminifera from offshore by storm and/or tidal current. The relatively high numbers of species in lower middle to lower flat are probably caused by a mixing of faunas from these areas and offshore. The high numbers of total individuals per 50 ml of sediment in upper flat indicate that this area is a relatively stable environment where waves and currents are protected by the chenier. Five biofacies of the total foraminiferal assemblages were established on the basis of dominant species (those representing more than 20% of the total assemblages in any station) in the five a priori subenvironments recognized along the Line-SW transect in Gomso-Bay tidal flat. Five biofacies are potentially useful in paleoenvironmental interpretation in late Quaternary Gomso-Bay tidal deposits.

  • PDF

The Site Effect of the Broadband Seismic Stations in Korea (국내 광대역 지진 관측소의 부지효과)

  • Wee, Soung-Hoon;Kim, Sung-Kyun
    • Economic and Environmental Geology
    • /
    • v.41 no.2
    • /
    • pp.225-242
    • /
    • 2008
  • The site effect for 23 broadband seismic stations in the southern Korean Peninsula was estimated by using the spectral ratio of coda waves. In principle, the site effect means the pure amplification below the station excluding effects of seismic source and attenuation in the wave transmission. However, the site effect determined in this study is equivalent with the relative site amplification factor to the mean amplification for all stations. A total of 500 three-component seismograms from 35 earthquakes, of which magnitude ranged from 2.5 to 5.1 occurred from January, 2001 to January, 2007 was used to obtain the site amplification factor. The site amplification factors were estimated for the frequency bands centered at 0.2, 0.5, 1, 2, 5, 10, 15, and 20 Hz. It was found that the factors for two horizontal components of transverse and radial records were concordant with each other in the all frequency bands. However, the factor for the vertical component was found to be systematically lower than those for two horizontal components. The factors obtained in the low frequency band below 2 Hz ranged from 0.5 to 1.5 in all seismic stations except for KMA and KIGAM stations in Bagryeongdo (BRD1 and BRD2) of which factor showed high value above 1.5. Some stations such as SEO, SNU, HKU, NPR, and GKPI showed high value above 1.5 in the high frequency band from 5 to 20 Hz. Especially, the factors of GKP1 station represented extremely high value ranging from 1.8 to 7.8. Also, the factors for stations of KWJ, SND, and ULJ showed low value below 0.5. The spatial distribution for the relative amplification factor represented a tendency of being approximately lower in north-eastern area than south-western area in the southern Korean Peninsula.