• Title/Summary/Keyword: high voltage generator

Search Result 573, Processing Time 0.035 seconds

Power Management of Open Winding PM Synchronous Generator for Unbalanced Voltage Conditions

  • EL-Bardawil, Ashraf;Moussa, Mona Fouad
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2192-2201
    • /
    • 2016
  • Wind energy is currently the fastest-growing electricity source worldwide. The cost efficiency of wind generators must be high because these generators have to compete with other energy sources. In this paper, a system that utilizes an open-winding permanent-magnet synchronous generator is studied for wind-energy generation. The proposed system controls generated power through an auxiliary voltage source inverter. The VA rating of the auxiliary inverter is only a fraction of the system-rated power. An adjusted control system, which consists of two main parts, is implemented to control the generator power and the grid-side converter. This paper introduces a study on the effect of unbalanced voltages for the wind-generation system. The proposed system is designed and simulated using MATLAB/Simulink software. Theoretical and experimental results verify the validity of the proposed system to achieve the power management requirements for balanced and unbalanced voltage conditions of the grid.

A New Generation of Biocompatible Pulse-discharged Plasma by Marx Generator and Its Application on the Biomolecules

  • Park, Ji-Hun;Attri, Pankaj;Hong, Yeong-Jun;Kumar, Naresh;Kim, Sang-Yeop;Kim, Yeong-Jo;Lee, Gu-Hyeop;Lee, Seung-Mok;Park, Bong-Sang;Jeon, Su-Nam;Choe, Eun-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.240.2-240.2
    • /
    • 2014
  • Characteristics of pulse-discharged plasma in liquid and its biological applications to proteins are investigated by making use of high voltage Marx generator. The Marx generator has been consisted of 5 stages, where each charging capacitor is $0.5{\mu}F$ to generate a high voltage pulse with rising time of $1{\mu}s$. We have applied an input voltage of 6 kV to the each capacitor of $0.5{\mu}F$. The high voltage pulsed plasma has been generated inside a polycarbonate tube by a single-shot operation, where the breakdown voltage is measured to be 7 kV, current of 1.2 kA, and pulse width of ${\sim}1{\mu}s$ between the two electrodes of anode-cathode made of stainless steel, which are immersed into the liquids. For the investigation of the influence of pulsed plasma on biomolcules, we have focused on the amino acids, DNA, proteins, cell and cholesterol.

  • PDF

Fabrication of 200kV Coaxial Type Marx Generator and its Performances (200kV급 동축형 Marx 펄스발생장치 제작 및 동작특성)

  • Lee, Sang-Woog;Lee, Chae-Min;Koo, Ja-Yoon;Chang, Yong-Moo
    • Proceedings of the KIEE Conference
    • /
    • 2008.10a
    • /
    • pp.89-90
    • /
    • 2008
  • Pulsed power technologies in variable fields require the pulsed high power sources. We fabricated the pulsed power generator, named EMD Pulse Generator(EPG), by using Marx circuit with 200 kV high, 50 ns fast rise time. In this paper, we described about the performances.

  • PDF

Reactive Current Assignment and Control for DFIG Based Wind Turbines during Grid Voltage Sag and Swell Conditions

  • Xu, Hailiang;Ma, Xiaojun;Sun, Dan
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.235-245
    • /
    • 2015
  • This paper proposes a reactive current assignment and control strategy for a doubly-fed induction generator (DFIG) based wind-turbine generation system under generic grid voltage sag or swell conditions. The system's active and reactive power constrains during grid faults are investigated with both the grid- and rotor-side convertors (GSC and RSC) maximum ampere limits considered. To meet the latest grid codes, especially the low- and high-voltage ride-through (LVRT and HVRT) requirements, an adaptive reactive current control scheme is investigated. In addition, a torque-oscillation suppression technique is designed to reduce the mechanism stress on turbine systems caused by intensive voltage variations. Simulation and experiment studies demonstrate the feasibility and effectiveness of the proposed control scheme to enhance the fault ride-through (FRT) capability of DFIG-based wind turbines during violent changes in grid voltage.

New Control Scheme for the Wind-Driven Doubly Fed Induction Generator under Normal and Abnormal Grid Voltage Conditions

  • Ebrahim, Osama S.;Jain, Praveen K.;Nishith, Goel
    • Journal of Power Electronics
    • /
    • v.8 no.1
    • /
    • pp.10-22
    • /
    • 2008
  • The wind-driven doubly fed induction generator (DFIG) is currently under pressure to be more grid-compatible. The main concern is the fault ride-through (FRT) requirement to keep the generator connected to the grid during faults. In response to this, the paper introduces a novel model and new control scheme for the DFIG. The model provides a means of direct stator power control and considers the stator transients. On the basis of the derived model, a robust linear quadratic (LQ) controller is synthesized. The control law has proportional and integral actions and takes account of one sample delay in the input owing to the microprocessor's execution time. Further, the influence of the grid voltage imperfection is mitigated using frequency shaped cost functional method. Compensation of the rotor current pulsations is proposed to improve the FRT capability as well as the generator performance under grid voltage unbalance. As a consequence, the control system can achieve i) fast direct power control without instability risk, ii) alleviation of the problems associated with the DFIG operation under unbalanced grid voltage, and iii) high probability of successful grid FRT. The effectiveness of the proposed solution is confirmed through simulation studies on 2MW DFIG.

A Study on the Application of Micro Hydro Power Generator at the Water Treatment Plant (정수장 마이크로 소수력 발전기 적용에 대한 연구)

  • Kim, Jong-Gyeum;Park, Young-Jeen;Kim, Il-Jung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.9
    • /
    • pp.67-72
    • /
    • 2014
  • Inflow or outflow from the water treatment plant and the sewage water has potential energy. If this potential energy can be converted into electrical energy by water turbine generator, it can help to save energy because of the high capacity utilization. So recently, micro hydro power plant is reviewed in the water treatment facility. If generation capacity is low, induction generator is primarily used. If output capacity is low, generated power is supplied to the inside load. Induction generator can cause voltage drop by the inrush current at a start-up and requires reactive power for magnetization. In this study, we analyzed the flow of power and voltage variation against inrush current that occurs when the induction generator starts under the terms that loads of linear and non-linear of the water purification plant are used. Analysis results are that the voltage drop is within an allowable range and the power factor is slightly reduced by the need of reactive power.

Analysis and Performance Improvement of Integrated E1 Pulse Generator for EMP Protection Performance Test (EMP 방호성능 시험용 통합형 E1 펄스 발생장치 분석 및 성능 개선)

  • Kim, Young-Jin;Kang, Ho-jae;Jeong, Young-Kyung;Youn, Dong-Gi;Park, Yong Bae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.6
    • /
    • pp.415-423
    • /
    • 2018
  • We herein investigate the E1 pulse for evaluating the conducted performance of transmission lines connected to the electromagnetic pulse protection facilities against a conducted high-altitude electromagnetic pulse threat exposed to an external electromagnetic environment. The existing E1 pulse generator uses the Marx generator high-voltage step-up method; however, in this research, we used the Tesla transformer method to easily change the broadband output voltage(30 to 350 kV). We also analyzed the controller, power supply, high-voltage booster, and pulse-shaping device. The E1 pulse performance using the Tesla transformer was predicted through simulations and validated by measurements.

High Voltage Nano-Pulse Generator for Industrial Waste Water Treatment (폐수 처리용 고전압 나노 펄스 발생기)

  • Jang, Sung-Duck;Son, Yoon-Gyu;Oh, Jong-Seok;Kwon, O-Jung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.3
    • /
    • pp.311-318
    • /
    • 2001
  • The application of a pulsed power system is being extended to a environmental and industrial fields. The non-dissolution waste water pollutants from industrial plants can be processed by applying high voltage pulses with a fast rising time (a few nanoseconds) and short duration (nano to microseconds) in a pulsed corona discharge reactor. The nano-pulse generator with a magnetic switch has been developed. Its corona current in load can be adjusted by pulse width and repetition rate. we investigated the performance of the nano-pulse generator using the dummy load which is composed of resistor and capacitor equivalent to the actual reactor. This paper descibes the electrical characteristics of the nano-pulse generator that produces a 300 ns pulse at maximum repetition rate of 400 pps with a voltage of 40 kV across a $640{\Omega}$ load. In this paper we briefly discuss a configuration of system and test results.

  • PDF

High Performance Control of Digital Excitation System for Synchronous Generator (동기발전기용 디지털 여자시스템 고성능 제어)

  • Seo M. S.;Ryu D. K.;Kim L. H.;Kim J. H.;Won C. Y.;Bae K. H.
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.763-768
    • /
    • 2002
  • In this paper digitally based excitation systems for the synchronous brushless generators are presented. System configuration, control functions with their structure functions are also shown. The control system has two feedback loops: main one based on a generator's voltage with digital controller and inner one based on excitation voltage of the exciter with analog controller. Usually the generator regulation of voltage Is made with transducers for the voltage measurement. This paper shows technique of measuring the voltage without harmonics affect, using Park's equation transformation.

  • PDF

A solid-state switch based high-voltage pulsed power supply (반도체 스위치형의 고전압 펄스 전원장치)

  • Kim, Guang-Hoon;Lee, Hong-Sik;Sytykh, D.;Rim, Geun-Hie
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.215-217
    • /
    • 2001
  • This paper describes an all solid-state switch pulse generator for various applications where square pulse voltage is required. The pulse generator produces various voltage pulses: voltage $5{\sim}100kV$. current $10{\sim}200A$, pulse width $1{\sim}10{\mu}sec$, repetition rate up to 500Hz. The output power is the combination of these parameters up to 10kW. It consists of a DC-DC converter and several pulse generating modules which are connected in series to obtain higher pulse voltage. Each module contains semiconductor switches (IGBT's), energy storage capacitors and control units to trigger switches. The structure and operational principle are described and the protection circuit for reliable operation is suggested. Experimental results show that the pulse generator can be used for applications with nonlinear loads.

  • PDF