• Title/Summary/Keyword: high voltage discharge plasma

Search Result 223, Processing Time 0.026 seconds

AC Plasma Power Supply with Variable Voltage and Variable Frequency (가변전압 가변주파수(VVVF) 교류 플라즈마 전원장치)

  • Shin Wan-Ho;Yun Kee-Pok;Jeoung Hwan-Myoung;Choi Jae-Ho
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1205-1207
    • /
    • 2004
  • AC plasma power supply is used to control a ozone generator and a air pollution gas. AC plasma power supply is composed of power semiconductor switch devices and control board adapted SHE(Selected Harmonic Elimination) PWM method. AC plasma power supply with sinusoidal VVVF(variable voltage and variable frequency) is realized. Its output voltage range is from 0 [V] to 20[kV] and output frequency range is from 8[kHz] to 20[kHz]. Using proposed system, AC high voltage and high frequency discharge is tested in the DBD(dieletric barrier discharge) reactor, and the space distribution of a its non-thermal plasma is observed. In spite of the increasement of voltage and frequency, the proposed system have a stable operation characteristics. It is verified by the experimental results.

  • PDF

Formation of dielectric carbon nitride thin films using a pulsed laser ablation combined with high voltage discharge plasma (펄스 레이저 애블레이션이 결합된 고전압 방전 플라즈마 장치를 이용한 유전성 질화탄소 박막의 합성)

  • Kim, Jong-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.208-211
    • /
    • 2003
  • The dielectric carbon nitride thin films were deposited onto Si(100) using a pulsed laser ablation of pure graphite target combined with a high voltage discharge plasma in nitrogen gas atmosphere. We can be calculated dielectric constant, ${\varepsilon}_s$, with a capacitance Sobering bridge method. We reported to investigate the influence of the laser ablation of graphite target and DC high voltage source for the plasma. The properties of the deposited carbon nitride thin films were influenced by the high voltage source during the film growth. Deposition rate of carbon nitride films were found to increase drastically with the increase of high voltage source. Infrared absorption clearly shows the existence of C=N bonds and $C{\equiv}N$ bonds. The carbon nitride thin films were observed crystalline phase, as confirmed by x-ray diffraction data.

  • PDF

Electron-excitation Temperature with the Relative Optical-spectrumIntensity in an Atmospheric-pressure Ar-plasma Jet

  • Han, Gookhee;Cho, Guangsup
    • Applied Science and Convergence Technology
    • /
    • v.26 no.6
    • /
    • pp.201-207
    • /
    • 2017
  • An electron-excited temperature ($T_{ex}$) is not determined by the Boltzmann plots only with the spectral data of $4p{\rightarrow}4s$ in an Ar-plasma jet operated with a low frequency of several tens of kHz and the low voltage of a few kV, while $T_{ex}$ can be obtained at least with the presence of a high energy-level transition ($5p{\rightarrow}4s$) in the high-voltage operation of 8 kV. The optical intensities of most spectra that are measured according to the voltage and the measuring position of the plasma column increase or decay exponentially at the same rate as that of the intensity variation; therefore, the excitation temperature is estimated by comparing the relative optical-intensity to that of a high voltage. In the low-voltage range of an Ar-jet operation, the electron-excitation temperature is estimated as being from 0.61 eV to 0.67 eV, and the corresponding radical density of the Ar-4p state is in the order of $10^{10}{\sim}10^{11}cm^{-3}$. The variation of the excitation temperature is almost linear in relation to the operation voltage and the position of the plasma plume, meaning that the variation rates of the electron-excitation temperature are 0.03 eV/kV for the voltage and 0.075 eV/cm along the plasma plume.

Experimental Study on the Effect of Plasma Reactor Type on Corona Discharge and NO-NO2 Conversion Characteristics (플라즈마 반응기구조에 따른 코로나방전 및 NO-NO$_2$ 전환특성에 관한 실험적 연구)

  • 박용성;전광민
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.65-71
    • /
    • 2002
  • Characteristics of corona discharge of the different types of the plasma reactors which are cone-hole and cone-plate is investigated experimentally. The discharge starts at lower voltage for the cathode corona than the anode corona and spark occurs at higher voltage for the cathode corona. And the cathode corona makes more stable discharge than the anode corona. The effect of the base gas in corona discharge for different O$_2$/N$_2$ concentrations is related with the gas molecular weight. The discharge for the smaller molecular weight gas occurs easier than for the high molecular weight gas. The discharge current decreases with the increase of oxygen concentration and it increases more sharply for anode corona than for cathode corona as discharge voltage increases after corona onset voltage. NO-NO$_2$ conversion increases with the energy density of corona discharge and the addition of O$_2$ in a base N$_2$ gas.

Bidirectional Pulse Power Supply for Dielectric Barrier Discharge (유전체 장벽 방전을 위한 양방향 펄스 전원장치)

  • Shin, Wan-Ho;Hong, Won-Seok;Jeoung, Hwan-Myoung;Choi, Jae-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1521-1523
    • /
    • 2005
  • High voltage plasma power supply was adopted to control polluted gases and an ozone generation. Bidirectional pulse power supply consisted of power semiconductor switch devices, a high voltage transformer, and a control board adapted switching method. Plasma power supply with sinusoidal bidirectional pulse, which has output voltage range of 0-20kV and output frequency range of 1kHz-20kHz, is realized. Using proposed system, pulsed high voltage/high frequency discharges were tested in a DBD(dielectric barrier discharge) reactor, and the spatial distribution of a glow discharge was observed. The system showed stable operational characteristics, even though the voltage and the frequency increased. Above features were verified by experiments.

  • PDF

Measurement of Wall Voltage in Reset Discharge of AC PDP

  • Park, K.D.;Jung, Y.;Ryu, C.G.;Choi, J.H.;Kim, S.B.;Cho, T.S.;Oh, P.Y.;Jeon, S.H.;Choi, E.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.722-725
    • /
    • 2003
  • In AC plasma display, it is very important to quantify the wall voltage induced by the wall charge accumulated on the dielectric surface. If we know the quantities of the wall voltage in each period of every sequence; reset period, address period and sustain period, then it helps us to design the optimal driving waveform for high efficiency plasma display. We develop a new method to measure the wall voltage with VDS (Versatile Driving Simulator) system. From this method the wall voltage induced by a wall charge profiles just after the reset discharge of every cells in plasma display panel can be investigated and analyzed successfully. It is noted that the wall voltage profiles are influenced by the space charge and then they are stabilized as time goes by. It is also noted that both the remaining wall charge at the previous sequence and space charges contribute to wall voltage quantities just after the reset discharge. It is noted that the wall charges contribute dominantly after a few hundreds microseconds, while the space charges have been decayed within 100 ${\mu}s$ just after the reset discharge.

  • PDF

Effect of Annealing on Carbon Nitride Films Prepared by High Voltage Discharge Plasma (고전압 방전 플라즈마에 의해 합성한 질화탄소 박막의 열처리 효과)

  • 김종일
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.5
    • /
    • pp.455-459
    • /
    • 2002
  • I have investigated the effects of annealing on a polymeric $\alpha-C_3N_{4.2}$ at high pressure and temperature in the presence of seeds of crystalline carbon nitride films prepared by a high voltage discharge plasma. The samples were evaluated by x-ray photoelectron spectroscopy (XPS), infrared spectroscopy, Auger electron spectroscopy and x-ray diffraction(XRD). Notably, XPS studies of the film composition before and after annealing demonstrate that the nitrogen composition in $\alpha-C_3N_{4.2}$ material initially containing more than 58% nitrogen decreases during the annealing process and reaches a common, stable composition of ~43%. XPS analysis also shows that the nitrogen composition in the annealed films without polymeric $\alpha-C_3N_{4.2}$ was reduced from 35% to 17%. Furthermore the concentration of the sp$^3$bonded phase increased with the increment of the annealing temperature.

Analysis of the Effects of SD Plasma on Aerodynamic Drag Reduction of a High-speed Train

  • Lee, Hyung-Woo;Kwon, Hyeok-Bin
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1712-1718
    • /
    • 2014
  • Experimental analysis according to the plasma actuator design variables was performed in order to verify the effects of sliding discharge plasma on aerodynamic drag reduction of a high-speed train. For the study, sliding discharge plasma actuator and high-frequency, high-voltage power supply were developed and experimented to figure out the best design variables for highest ionic wind velocity which could reduce the drag force. And then, 5% reduced-scale model of a high-speed train was built for wind tunnel test to verify it. From the results, it was confirmed that sliding discharge plasma had contribution to reduce the drag force and it had the potential to be applied to real-scale trains.

Plasma Propagation Speed and Electron Temperature of Atmospheric Pressure Non-Thermal Ar Plasma Jet

  • Han, Guk-Hui;Kim, Dong-Jun;Kim, Hyeon-Cheol;Kim, Yun-Jung;Kim, Jung-Gil;Lee, Won-Yeong;Na, Ya-Na;Jo, Gwang-Seop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.512-513
    • /
    • 2013
  • Space and time resolved discharge images from an atmospheric pressure non-thermal Ar plasma jet have been observed by a ICCD camera to investigate the electron temperatures. Plasma jet device consisting of a syringe electrode inserted into a glass tube has been introduced. A high voltage is applied to the syringe electrode. The syringe needle has an outer diameter of 1.8 mm, an inner diameter of 1.3 mm, and a total length of 39.0 mm. The needle is inserted into a glass tube of outer diameter 2.4 mm and inner diameter 2.0 mm, and a total length of 80.0 mm. The Ar plasma propagation speed on the cathode has been shown to be about 2.1 km/s at input discharge voltage of 3.6 kV, discharge current of 19.9 mA and driving frequency of about 45 kHz. Particularly, the electron temperature in plasma jet were found to be about 1.8 eV at input discharge voltage of 3.6 kV and driving frequency of 45 kHz, respectively.

  • PDF

A Compact Pulse Corona Plasma System with Photocatalyst for an Air Conditioner (광촉매와 조합된 코로나 방전 플라즈마 필터의 유해 가스 및 입자 제거 특성)

  • Shin, Soo-Youn;Moon, Jae-Duk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.151-155
    • /
    • 2007
  • A compact discharge plasma system with a photocatalyst has been proposed and investigated experimentally for application to air conditioners. It was found that there was intense ultra violet radiation with high energy of 3.2 eV from the corona discharge due to the DC-biased pulse voltage applied on a wire. An electrophotochemical reaction took place apparently on the surfaces of the photocatalyst of $TiO_2$ irradiated ultra violet front the discharge plasma in the proposed plasma system. The proposed discharge plasma system with the photocatalyst of $TiO_2$ showed very high removal efficiency of VOCs by tile additional electrophotochemical reactions on the photocatalyst. The proposed discharge plasma system also showed very high removal efficiency of particles such as smokes, suspended bacteria, and pollen and mite allergens by the electrostatic precipitation part. This type of corona discharge plasma system with a photocatalyst can be used as an effective means of removing both indoor pollutant gases and particles including suspended allergens.