• Title/Summary/Keyword: high transmittance

Search Result 913, Processing Time 0.025 seconds

Haze Characteristics of Mica Coated with Magnesium Oxide (산화마그네슘을 코팅한 마이카의 헤이즈 특성)

  • Kang, Kuk-Hyoun;Hyun, Mi-Ho;Lee, Dong-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.888-894
    • /
    • 2015
  • Inorganic composite particles have excellent physical and chemical characteristics and have been applied in various industries. Recently, many studies have examined the optical properties, such as light scattering, refraction, transmission characteristics, by coating organic-inorganic materials on a substrate, such as mica. Mica is widely applied as a pigment, plastics, painted products, and ceramics because of its high chemical stability, durability and non-toxicity. Magnesium oxide has a range of properties, such as high light transmittance, corrosion resistance and non-toxicity, and it is used as an optical material and polymer additives. To use the optical properties of mica and magnesium oxide, mica was coated with magnesium hydroxide by a dissolution and recrystallization process. In this study, the optimal conditions for the haze value of the particles were found by adjusting the amount of precursors and pH. Magnesium hydroxide layers were formed on the surfaces of mica and converted to MgO after calcination at $400^{\circ}C$ for 4 h. The results showed that the value of MgO-coated mica haze can be controlled easily by the amount of the magnesium hydroxide and pH. The optical properties of the inorganic composite powder were analyzed using a hazemeter and the highest haze value was 85.92 % at pH 9. The physicochemical properties of the synthesized composite was analyzed by SEM, XRD, EDS, and PSA.

A Study on Synthesis of Organic Plant Surfactant and Its Solubilizing Action on Bergamot Oil (유기농 식물성 계면활성제의 합성과 베르가못오일에 대한 가용화력에 관한 연구)

  • Kim, In-Young;Noh, Ji-Min
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.1208-1218
    • /
    • 2019
  • The study is on the cosmetic solubilizing power of organic plant surfactants. The blended high purity polyglyceryl-10 oleate and polyglyceryl-10 stearate mixtures were synthesized using organically certified raw materials to develop surfactants having excellent solubilizing power. The mixture is called "Solubil ORG-1300". The appearance of this material is a pale yellowish paste, with a specific odor. The specific gravity was 1.12 and it was high purity that acid value was 0.072±0.1. The HLB value of this natural surfactant was averaged = 15.1 and calculated through the Griffin equation. Mechanically it is explained how organic surfactant are available with fragrance and oils. The solubilizing test was determined by eye evaluation method through the dissolving performance test for the two oils and measured the transmittance at 890 nm using a UV spectrophotometer to measure the transparency. The results showed that the concentration of surfactant needed to make Bergamot oil available requires approximately more 2 times. It was also found that the concentration of surfactant needed to make the tocoperyl acetate available was about 8 times higher. Experiments on the solubility resulting from pH changes showed stabilized usable solubilizing power even in acidic areas of pH=3.5, neutral areas of pH=7.2, and alkaline areas of pH=1.5. Experiments on the solubility according to pH variation showed good solubility stabilized in acidic areas of pH=3.5, neutral areas of pH=7.2, and alkaline areas of pH=11.5. As an application of cosmetics, the company successfully developed a prescription for moisturizing activity based on these results, it is expected that a wide range of applications will be available for skin care, baby lotion, sensitivity or atopic skin cosmetics.

Effect of the Concentration of Citrate on the Growth of Aqueous Chemical Bath Deposited ZnO and Application of the Film to Cu(In,Ga)Se2 Solar Cells (Citrate 농도에 따른 수용액 화학조 증착 ZnO 성장 및 ZnO 박막의 Cu(In,Ga)Se2 태양전지 응용)

  • Cho, Kyung Soo;Jang, Hyunjun;Oh, Jae-Young;Kim, Jae Woo;Lee, Jun Su;Choi, Yesol;Hong, Ki-Ha;Chung, Choong-Heui
    • Korean Journal of Materials Research
    • /
    • v.30 no.4
    • /
    • pp.204-210
    • /
    • 2020
  • ZnO thin films are of considerable interest because they can be customized by various coating technologies to have high electrical conductivity and high visible light transmittance. Therefore, ZnO thin films can be applied to various optoelectronic device applications such as transparent conducting thin films, solar cells and displays. In this study, ZnO rod and thin films are fabricated using aqueous chemical bath deposition (CBD), which is a low-cost method at low temperatures, and environmentally friendly. To investigate the structural, electrical and optical properties of ZnO for the presence of citrate ion, which can significantly affect crystal form of ZnO, various amounts of the citrate ion are added to the aqueous CBD ZnO reaction bath. As a result, ZnO crystals show a nanorod form without citrate, but a continuous thin film when citrate is above a certain concentration. In addition, as the citrate concentration increases, the electrical conductivity of the ZnO thin films increases, and is almost unchanged above a certain citrate concentration. Cu(In,Ga)Se2 (CIGS) solar cell substrates are used to evaluate whether aqueous CBD ZnO thin films can be applicable to real devices. The performance of aqueous CBD ZnO thin films shows performance similar to that of a sputter-deposited ZnO:Al thin film as top transparent electrodes of CIGS solar cells.

System Implementation for Generating High Quality Digital Holographic Video using Vertical Rig based on Depth+RGB Camera (Depth+RGB 카메라 기반의 수직 리그를 이용한 고화질 디지털 홀로그래픽 비디오 생성 시스템의 구)

  • Koo, Ja-Myung;Lee, Yoon-Hyuk;Seo, Young-Ho;Kim, Dong-Wook
    • Journal of Broadcast Engineering
    • /
    • v.17 no.6
    • /
    • pp.964-975
    • /
    • 2012
  • Recently the attention on digital hologram that is regarded as to be the final goal of the 3-dimensional video technology has been increased. A digital hologram can be generated with a depth and a RGB image. We proposed a new system to capture RGB and depth images and to convert them to digital holograms. First a new cold mirror was designed and produced. It has the different transmittance ratio against various wave length and can provide the same view and focal point to the cameras. After correcting various distortions with the camera system, the different resolution between depth and RGB images was adjusted. The interested object was extracted by using the depth information. Finally a digital hologram was generated with the computer generated hologram (CGH) algorithm. All algorithms were implemented with C/C++/CUDA and integrated in LabView environment. A hologram was calculated in the general-purpose computing on graphics processing unit (GPGPU) for high-speed operation. We identified that the visual quality of the hologram produced by the proposed system is better than the previous one.

Fabrication of superhydrophobic $TiO_2$ thin films by wet process (습식 공정법에 의한 초발수 $TiO_2$ 박막 제조)

  • Kim, Jin-Ho;Jung, Hyun-Ho;Hwang, Jong-Hee;Lim, Tae-Young;Choi, Duk-Gun;Cheong, Deock-Soo;Kim, Sae-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.5
    • /
    • pp.262-267
    • /
    • 2009
  • Superhydrophobic $TiO_2$ thin films were successfully fabricated on a glass substrate by wet process. Layer-by-layer (LBL) deposition and liquid phase deposition (LPD) methods were used to fabricate the thin films of micro-nano complex structure with a high roughness. To fabricate superhydrophobic $TiO_2$ thin films, the (PAH/PAA) thin films were assembled on a glass substrate by LBL method and then $TiO_2$ nanoparticles were deposited on the surface of (PAH/PAA) thin film by LPD method, Subsequently, hydrophobic treatment using fluoroalkyltrimethoxysilane (FAS) was carried out on the surface of prepared $TiO_2$ thin films. The $TiO_2$ thin film fabricated with 45 minutes immersion time on $(PAH/PAA)_{10}$ showed the RMS roughness of 65.6nm, water contact angel of $155^{\circ}$ and high transmittance of above 80% (>650nm in wavelength) after the hydrophobic treatment. The Surface morphologies, optical properties and contact angel of prepared thin films with different experimental conditions were measured by field emission scanning electron microscope (FE-SEM), atomic force microscope (AFM), UV-Vis spectrophotometer and contact angle meter.

Preparation of Water-Resistant Hydrophilic Coating Solutions for PET film (내수성이 우수한 PET 필름용 친수성 코팅액의 제조)

  • Lee, Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.584-594
    • /
    • 2014
  • To increase of surface hydrophilicity of polymeric thin films is an important approaching technique for introduction of self-cleaning and/or antifogging properties on the surfaces of those films. In general, hydrophilic surface can be produced by coating non ionic surfactants or by increasing surface energy. Various non-ionic surfactants, such as Tween, Span, and PEG-PPG block copolymers were selected for our experiments, because they are cheap and well soluble in toluene system as well as they contain several reactive hydroxy fuctional groups with coupling agents. Blending conditions influence the PET film surface hydrophilicities. However, the introduction of only these surfactants on the surface of PET films did not show the high durability of hydrophilic properties after washing with water. To improve the durability two types of coupling agents such as epoxide and diisocyanate were adopted. Contact angle of water on hydrophilically coated PET film surface with 6 wt% of isophrone diisocyanate(IPDI) containing coating solution was reached to $8.7^{\circ}$, which was an indirect evidence for very high surface hydrophilicity. A light(500 nm of wavelength) transmittance value of coated PET film was changed only from 87% to 85% with keeping a good transparent property. This film can be usable for self-cleaning film industries.

Physicochemical Properties of Rice Starch by Amylose Content (아밀로오스 함량별 쌀전분의 이화학적 특성)

  • Lee, Sang-Hyo;Han, Ouk;Lee, Hyun-Yu;Kim, Sung-Soo;Chung, Dong-Hyo
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.766-771
    • /
    • 1989
  • physicochemical properties of rice starch isolated from eight varieties were examined to evaluate the rice processing suitability The amylose contents of rice starch were varied with 16.7-29.7%, and IR 30, Godael, Aguja and Lengkwang varieties showed higher amylose content than the other varieties. The water binding capacity and blue value were in the range of 87.0 103.0 and 0.178-0.305, respectively. As the amylose content increased, the amylogram pasting temperature and the break down ratio increased, while the peak viscosity did not show any significant difference. The transmittance of 0.1% starch suspension slowly increased at $50^{\circ}C$ in the low-amylose content rice group, and rapidly increased at $65^{\circ}C$ in the high-amylose content rice group, but there were no differences above $75^{\circ}C$ among varieties. Also the low-amylose rice starch showed higher values in the swelling power and solubility. The hardness of the 30% rice starch gels was low in low-amylose one. During storage at $20^{\circ}C$ for 14 days, the increment of hardness was more slow in high-amylose one. The retrogradation velocity constant of rice starch gel by Avrami equation was the highest as 0.219 in Aguja variety.

  • PDF

The Physiological Responses and Subjective Sensation in the Subjects Wearing Dust-free Garment for Semiconductor Industrial Environments (방진복 착용에 따른 인체의 온열생리적 특성 및 주관적 감각)

  • 권오경;이창미
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 1998.04a
    • /
    • pp.255-263
    • /
    • 1998
  • Dust-free garment prevents contamination which otherwise is caused by skin and clothes to protect from dust or dirt. Therefore, it requires high performance and should function as a working clothes. Clothes are a medium between human and thermal environmental system, and it is required to study human enviroment to ensure comfortableness of clothes and to satisfactorily go along with enviroment .This study investigates the physical and physiological features of dust-free garment used in the clean room at a semiconductor factory in oredr to scientifically clarify what the dust-free garmint is as well as to contribute to the design and development of high performance material and clothes. Three kinds of dust-free fabrics (DFG-I, DFG-II, DFG-III) which are being developed by a local company are used to manufacture dust-free garment. These dust-free garments are dressed and tested in such an enviroment as similar to semiconmemts with temperature at 23${\pm}$1$^{\circ}C$ and humidity at 50${\pm}$5%RH in order to investigate the thermo physiological and psychological features of human body. The results of this study are as follows. The results of this study are as follows. 1.The mean skin temperature was significantly different among the clothes, subjects and experimental time. Temperature tends to rise from the time of exercising load. Continuous motion coupled sealed clothes prevents heat transmittance, and temperature rises in the order of DFG-l, DFG-ll and DFG-lll as time course. 2.As for the skin temperature by local timperature is minimun on the head and torso and increares remarkably at the terminal part of human body. 3. As for the body mass loss was significantly higher in DFG-lll than DFG-l and DFG-ll. 4. Though there is no significant difference in the temperature within clothes among the kind of clothes temperature is 1$^{\circ}C$ higher in the back. Temperature within all the dust-free garments 29.7$^{\circ}C$ in the back and 31.3$^{\circ}C$ in the chest which belong to the comfort zone(31-33$^{\circ}C$). The relative humidity is 39.7%RH in the chest and 33.8%RH in the back which is slightly below the comfort zone(40-60%RH) 5. The thermal sensation belong to the comfort zone regardless of the kinds of clothes. The subjects feels a slight fatigue as times goes. As for the subjective sense of subjects the mean skin temperature as well as temperature and humidity within clothes show similar tendency. This means that they relate with each other.

  • PDF

Effect of Sputtering Powers on Mg and Ga Co-Doped ZnO Thin Films with Transparent Conducting Characteristics (RF 마그네트론 스퍼터를 이용하여 제작한 MGZO 박막의 구조적 및 전기적, 광학적 특성에 미치는 스퍼터링 전력의 영향)

  • Kim, In Young;Shin, Seung Wook;Kim, Min Sung;Yun, Jae Ho;Heo, Gi Seok;Jeong, Chae Hwan;Moon, Jong-Ha;Lee, Jeong Yong;Kim, Jin Hyoek
    • Korean Journal of Materials Research
    • /
    • v.23 no.3
    • /
    • pp.155-160
    • /
    • 2013
  • ZnO thin films co-doped with Mg and Ga (MxGyZzO, x + y + z = 1, x = 0.05, y = 0.02 and z = 0.93) were prepared on glass substrates by RF magnetron sputtering with different sputtering powers ranging from 100W to 200W at a substrate temperature of $350^{\circ}C$. The effects of the sputtering power on the structural, morphological, electrical, and optical properties of MGZO thin films were investigated. The X-ray diffraction patterns showed that all the MGZO thin films were grown as a hexagonal wurtzite phase with the preferred orientation on the c-axis without secondary phases such as MgO, $Ga_2O_3$, or $ZnGa_2O_4$. The intensity of the diffraction peak from the (0002) plane of the MGZO thin films was enhanced as the sputtering power increased. The (0002) peak positions of the MGZO thin films was shifted toward, a high diffraction angle as the sputtering power increased. Cross-sectional field emission scanning electron microscopy images of the MGZO thin films showed that all of these films had a columnar structure and their thickness increased with an increase in the sputtering power. MGZO thin film deposited at the sputtering power of 200W showed the best electrical characteristics in terms of the carrier concentration ($4.71{\times}10^{20}cm^{-3}$), charge carrier mobility ($10.2cm^2V^{-1}s^{-1}$) and a minimum resistivity ($1.3{\times}10^{-3}{\Omega}cm$). A UV-visible spectroscopy assessment showed that the MGZO thin films had high transmittance of more than 80 % in the visible region and that the absorption edges of MGZO thin films were very sharp and shifted toward the higher wavelength side, from 270 nm to 340 nm, with an increase in the sputtering power. The band-gap energy of MGZO thin films was widened from 3.74 eV to 3.92 eV with the change in the sputtering power.

Analysis of Laser-beam Thermal Effects In an Infrared Camera and Laser Common-path Optical System (적외선 카메라-레이저 공통광학계의 레이저빔 열 영향성 분석)

  • Kim, Sung-Jae
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.4
    • /
    • pp.153-157
    • /
    • 2017
  • An infrared camera and laser common-path optical system is applied to DIRCM (directional infrared countermeasures), to increase boresighting accuracy and decrease weight. Thermal effects of a laser beam in a common-path optical system are analyzed and evaluated, to predict any degradation in image quality. A laser beam with high energy density is absorbed by and heats the optical components, and then the surface temperature of the optical components increases. The heated optical components of the common-path optical system decrease system transmittance, which can degrade image quality. For analysis, the assumed simulation condition is that the laser is incident for 10 seconds on the mirror (aluminum, silica glass, silicon) and lens (sapphire, zinc selenide, silicon, germanium) materials, and the surface temperature distribution of each material is calculated. The wavelength of the laser beam is $4{\mu}m$ and its output power is 3 W. According to the results of the calculations, the surface temperature of silica glass for the mirror material and sapphire for the lens material is higher than for other materials; the main reason for the temperature increase is the absorption coefficient and thermal conductivity of the material. Consequently, materials for the optical components with high thermal conductivity and low absorption coefficient can reduce the image-quality degradation due to laser-beam thermal effects in an infrared camera and laser common-path optical system.