• Title/Summary/Keyword: high tensile steel

Search Result 1,069, Processing Time 0.024 seconds

Mechanical performances of concrete beams with hybrid usage of steel and FRP tension reinforcement

  • Bui, Linh V.H.;Stitmannaithum, Boonchai;Ueda, Tamon
    • Computers and Concrete
    • /
    • v.20 no.4
    • /
    • pp.391-407
    • /
    • 2017
  • Fiber reinforced polymer (FRP) bars have been recently used to reinforce concrete members in flexure due to their high tensile strength and especially in corrosive environments to improve the durability of concrete structures. However, FRPs have a low modulus of elasticity and a linear elastic behavior up to rupture, thus reinforced concrete (RC) components with such materials would exhibit a less ductility in comparison with steel reinforcement at the similar members. There were several studies showed the behavior of concrete beams with the hybrid combination of steel and FRP longitudinal reinforcement by adopting the experimental and numerical programs. The current study presents a numerical and analytical investigation based on the data of previous researches. Three-dimensional (3D) finite element (FE) models of beams by using ANSYS are built and investigated. In addition, this study also discusses on the design methods for hybrid FRP-steel beams in terms of ultimate moment capacity, load-deflection response, crack width, and ductility. The effects of the reinforcement ratio, concrete compressive strength, arrangement of reinforcement, and the length of FRP bars on the mechanical performance of hybrid beams are considered as a parametric study by means of FE method. The results obtained from this study are compared and verified with the experimental and numerical data of the literature. This study provides insight into the mechanical performances of hybrid FRP-steel RC beams, builds the reliable FE models which can be used to predict the structural behavior of hybrid RC beams, offers a rational design method together with an useful database to evaluate the ductility for concrete beams with the combination of FRP and steel reinforcement, and motivates the further development in the future research by applying parametric study.

Resistance Spot Weldability of Surface Roughness Textured Galvannealed Steel Sheets (표면조도처리 된 합금화 용융아연도금강판의 저항 점 용접성)

  • Park, Sang-Soon;Kim, Ki-Hong;Kang, Nam-Hyun;Kim, Young-Seok;Rhym, Young-Mok;Choi, Yung-Min;Park, Yeong-Do
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.8
    • /
    • pp.495-505
    • /
    • 2008
  • With the high proportion of zinc coated steels in body-in-white assembly, newly developed surface roughness textured galvannealed steel sheets have been introduced. In this study, zinc coated and surface roughness textured steel sheets were welded by resistance spot welding to investigate its weldability including electrode wear test. Based on the results of tensile-shear test, nugget diameter changes, and electrode tip growth test, it was clear that both surface roughness textured steels (GA-T and GA-E) showed good weldability. Also, there was no large difference in weldability and electrode wear behavior between GA-T and GA-E steels which have different surface roughness morphology. An analysis of electrode degradation showed Fe and Zn penetration through the electrode tip surface at 2400 welds reached $55{\sim}60{\mu}m$ and $75{\sim}80{\mu}m$, respectively. Therefore, there is no significant effect of surface roughness morphology on spot weldability of surface roughness textured galvannealed steel sheets. However, slight difference in thickness of alloying layers existing on electrode tip was found between GA-T and GA-E steels.

Tensile Properties of Hybrid Fiber Reinforced Cement Composite according to the Hooked & Smooth Steel Fiber Blending Ratio and Strain Rate (후크형 및 스무스형 강섬유의 혼합 비율과 변형속도에 따른 하이브리드 섬유보강 시멘트복합체의 인장특성)

  • Son, Min-Jae;Kim, Gyu-Yong;Lee, Sang-Kyu;Kim, Hong-Seop;Nam, Jeong-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.3
    • /
    • pp.31-39
    • /
    • 2021
  • In this study, the fiber blending ratio and strain rate effect on the tensile properties synergy effect of hybrid fiber reinforced cement composite was evaluated. Hooked steel fiber(HSF) and smooth steel fiber(SSF) were used for reinforcing fiber. The fiber blending ratio of HSF+SSF were 1.5+0.5, 1.0+1.0 and 0.5+1.5vol.%. As a results, in the cement composite(HSF2.0) reinforced with HSF, as the strain rate increases, the tensile stress sharply decreased after the peak stress because of the decrease in the number of straightened pull-out fibers by increase of micro cracks in the matrix around HSF. When 0.5 vol.% of SSF was mixed, the micro cracks was effectively controlled at the static rate, but it was not effective in controlling micro cracks and improving the pull-out resistance of HSF at the high rate. On the other hand, the specimen(HSF1.0SSF1.0) in which 1.0vol.% HSF and 1.0vol.% SSF were mixed, each fibers controls against micro and macro cracks, and SSF improves the pull-out resistance of HSF effectively. Thus, the fiber blending effect of the strain capacity and energy absorption capacity was significantly increased at the high rate, and it showed the highest dynamic increase factor of the tensile strength, strain capacity and peak toughness. On the other hand, the incorporation of 1.5 vol.% SSF increases the number of fibers in the matrix and improves the pull-out resistance of HSF, resulting in the highest fiber blending effect of tensile strength and softening toughness. But as a low volume fraction of HSF which controlling macro crack, it was not effective for synergy of strain capacity and peak toughness.

Evaluation on the Impact Resistant Performance of Fiber Reinforced Concrete by High-Velocity Projectile and Contacted Explosion (고속비상체 충돌 및 접촉폭발에 의한 섬유보강 콘크리트의 내충격 성능 평가)

  • Nam, Jeong-Soo;Kim, Hong-Seop;Lee, In-Cheol;Miyauchi, Hiroyuki;Kim, Gyu-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.1
    • /
    • pp.107-114
    • /
    • 2013
  • In this study we experimentally evaluated an impact resistant performance of fiber reinforced concrete in the moment of explosion by high-velocity projectile with emulsion explosive. To assess the impact resistance, we conducted the impact test of high-velocity projectile which reaches an impact speed of 350 m/s and the experiment of contact exploding emulsion explosive. As a result, bending and tensile performance depending on type of PVA, PE fiber (polyvinyl alcohol fiber, polyethylene fiber) and steel fiber affects destruction of rear side in the form of spalling. Destroying the backside of the concrete compressive strength compared to suppress the bending and tensile performance is affected. In addition, the experiment shows that the destruction patterns of concrete specimen producted by high velocity impact and contact explosion are significantly similar. Therefore, it is possible to predict the destruction patterns of specimens in the situation of contact explosion by high-velocity projectile.

Stretch-Flangeability of Harmonic Structure Material Manufactured by Powder Metallurgy Method (분말야금법으로 제조한 하모닉 구조재료의 신장플랜지 가공성)

  • Yoon, Jae Ik;Lee, Hak Hyeon;Park, Hyung Keun;Ameyama, Kei;Kim, Hyoung Seop
    • Journal of Powder Materials
    • /
    • v.24 no.2
    • /
    • pp.128-132
    • /
    • 2017
  • Harmonic structure materials are materials with a core-shell structure having a shell with a small grain size and a core with a relatively large grain size. They are in the spotlight because their mechanical properties reportedly feature strength similar to that of a sintered powder with a fine grain size and elongation similar to that of a sintered powder with a coarse grain size at the same time. In this study, the tensile properties, microstructure, and stretch-flangeability of harmonic structure SUS304L made using powder metallurgy are investigated to check its suitability for automotive applications. The harmonic powders are made by mechanical milling and sintered using a spark plasma sintering method at 1173 K and a pressure of 50 MPa in a cylindrical die. The sintered powders of SUS304L having harmonic structure (harmonic SUS304L) exhibit excellent tensile properties compared with sintered powders of SUS304L having homogeneous microstructure. In addition, the harmonic SUS304L has excellent stretch-flangeability compared with commercial advanced high-strength steels (AHSSs) at a similar strength grade. Thus, the harmonic SUS304L is more suitable for automotive applications than conventional AHSSs because it exhibits both excellent tensile properties and stretch-flangeability.

A Case Study on Stability Evaluation of Road Slope based on Geological Condition (지질조건에 따른 도로사면 안정검토에 대한 사례연구)

  • Park, Chal-Sook;Kim, Jae-Hong
    • The Journal of Engineering Geology
    • /
    • v.17 no.4
    • /
    • pp.577-587
    • /
    • 2007
  • The length of study area was about 450m, and it was shown the geological condition of distinguished change of rock by cutting slope. In order to establish a slope stability, we carried out an engineering geological investigations about rock constituent, rock structure and a direction of discontinuous plane. The study area was divided into six section considered by direction of cutting slope, height of slope and geological condition. Analysis of cutting slope stability was carried out with stereo-graphic projection method by DIPS program which was feasible of stability analysis with geometrical correlation for a direction of discontinuous plane and direction of cutting slope. From analysis of cutting slope stability considered by construction, stability and economical efficiency, the slope stability countermeasures such as a high tensile wire net, slope protection method and enhanced retaining wall were established and operated which minimized effect caused by lower end of road on a relaxation of huge rock.

Effects of Welding Condition on Microstructure and Mechanical Property of Energy Resistance Welding Alloy Steel Pipes (합금강관의 Energy Resistance Welding 용접조건에 따른 미세조직 거동 및 기계적 특성 연구)

  • Lee, Kyung-Min;Lee, Dong-Eon;Kim, Sung-Woong;Yoon, Byung-Hyun;Kang, Hee-Jae;Kang, Nam-Hyun;Cho, Kyung-Mox
    • Korean Journal of Materials Research
    • /
    • v.21 no.1
    • /
    • pp.50-55
    • /
    • 2011
  • Energy resistance welding (ERW) is a pipe-producing process that has high productivity and low manufacturing cost. However, the high heat input of ERW degrades the mechanical property of the pipe. This study investigates the effect of heat input and alloying elements on microstructure and mechanical properties of ERW pipes. As the heat input increased, the ferrite amount increased. The ferrite amount in the weld centerline was larger than t at in the weld boundary. Medium carbon steels (S45C and K55) having 0.3~0.4wt.% carbon yielded a significant difference of ferrite amount in the weld centerline and weld boundary. High alloyed steels (DP780 and K55) having 1.5~1.6wt.% Mn showed a ferrite rich zone in the weld centerline. These phenomena are probably due to decarburization and demanganisation in the weld centerline. As the ferrite fraction increased, the hardness decreased a little for the S45C steels. In addition, DP780 steels and K55 steels showed that the hardness drops when those steels have a ferrite rich zone. But we demonstrated the good tensile property of the DP780 steels and K55 steels in which Mn is included.

Effect of Ni Addition on Bainite Transformation and Properties in a 2000 MPa Grade Ultrahigh Strength Bainitic Steel

  • Tian, Junyu;Xu, Guang;Jiang, Zhengyi;Hu, Haijiang;Zhou, Mingxing
    • Metals and materials international
    • /
    • v.24 no.6
    • /
    • pp.1202-1212
    • /
    • 2018
  • The effects of Nickle (Ni) addition on bainitic transformation and property of ultrahigh strength bainitic steels are investigated by three austempering processes. The results indicate that Ni addition hinders the isothermal bainite transformation kinetics, and decreases the volume fraction of bainite due to the decrease of chemical driving force for nucleation and growth of bainite transformation. Moreover, the product of tensile strength and total elongation (PSE) of high carbon bainitic steels decreases with Ni addition at higher austempering temperatures (220 and $250^{\circ}C$), while it shows no significant difference at lower austempering temperature ($200^{\circ}C$). For the same steel (Ni-free or Ni-added steel), the amounts of bainite and RA firstly increase and then decrease with the increase of the austempering temperature, resulting in the highest PSE in the sample austempered at temperature of $220^{\circ}C$. In addition, the effects of austempering time on bainite amount and property of high carbon bainitic steels are also analyzed. It indicates that in a given transformation time range of 30 h, more volume of bainite and better mechanical property in high carbon bainitic steels can be obtained by increasing the isothermal transformation time.

Flange Local Buckling(FLB) for Flexural Strength of Plate Girders with High Performance Steel(HSB 800) (고성능 강재(HSB 800)를 적용한 플레이트 거더의 휨강도에 대한 플랜지 국부좌굴)

  • Kim, Jeong Hun;Kim, Kyoung Yul;Lee, Jeong Hwa;Kim, Kyung Sik;Kang, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.2
    • /
    • pp.91-103
    • /
    • 2014
  • High performance steel for bridges(HSB 800) with a minimum tensile stress of 800MPa was recently developed. However, the study for local buckling behavior of plate girders considering interactive effects of flanges and webs is still insufficient. In this study, the flange local buckling(FLB) strength of plate girders with HSB 800 was evaluated by nonlinear finite element analysis. The flanges and webs of plate girders having I-section were modeled as 3D shell elements in the nonlinear analysis. Initial imperfection and residual stress were imposed on the plate girder. The high performance steel was modeled as a multi-linear material. Thus, parametric study of compression flanges with a compact, noncompact and slender web was performed. The flange local buckling behavior of plate girders was analyzed, and the nonlinear analysis results were compared with the nominal flexural strength of both AASHTO LRFD(2012) and KHBDC LSD(2012) codes.

Anchorage Strength of Headed Bars in Steel Fiber-Reinforced UHPC of 120 and 180 MPa (120, 180 MPa 강섬유 보강 초고성능 콘크리트에 정착된 확대머리철근의 정착강도)

  • Sim, Hye-Jung;Chun, Sung-Chul;Choi, Sokhwan
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.3
    • /
    • pp.365-373
    • /
    • 2016
  • Ultra-High-Performance Steel Fiber-Reinforced Concrete (SUPER Concrete) exhibits improved compressive and tensile strengths far superior to those of conventional concrete. These characteristics can significantly reduce the cross sectional area of the member and the anchorage strength of a headed bar is expected to be improved. In this study, the anchorage strengths of headed bars with $4d_b$ or $6d_b$ embedment length were evaluated by simulated exterior beam-column joint tests where the headed bars were used as beam bars and the joints were cast of 120 or 180 MPa SUPER Concrete. In all specimens, the actual yield strengths of the headed bars over 600 MPa were developed. Some headed bars were fractured due to the high anchorage capacity in SUPER Concrete. Therefore, the headed bar with only $4d_b$ embedment length in 120 MPa SUPER Concrete can develop a yield strength of 600 MPa which is the highest design yield strength permitted by the KCI design code. The previous model derived from tests with normal concrete and the current design code underestimate the anchorage capacity of the headed bar anchored in SUPER Concrete. Because the previous model and the current design code do not consider the effects of the high tensile strength of SUPER Concrete. From a regression analysis assuming that the anchorage strength is proportional to $(f_{ck})^{\alpha}$, the model for predicting anchorage strength of headed bars in SUPER Concrete is developed. The average and coefficient of variation of the test-to-prediction values are 1.01 and 5%, respectively.