• Title/Summary/Keyword: high temperature-pressure curing

Search Result 36, Processing Time 0.036 seconds

An Effects of the Strength Development of High Strength Mortar under Temperature History by Steam Curing (촉진양생에 의한 온도이력이 고강도 모르타르의 강도발현에 미치는 영향)

  • Kwon, Hee-Sung;Choi, Eung-Kyu;Lim, Nam-Ki;Lee, Young-Do;Jung, Sang-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.4
    • /
    • pp.115-121
    • /
    • 2008
  • The present study performed low-pressure steam curing with mortar specimens in order to examine the temperature profile and strength development of steam curing in high-strength specimens of 100MPa. In addition, as a basic research to utilize PC products, we examined the effects of curing temperature and time in steam curing cycle on strength development resulting from the hydration of cement within the range of high strength by changing four factors affecting the quality of PC displacement time, peak curing temperature, peak temperature duration, and ascending and descending gradient of temperature - in various patterns, and analyzed the optimal strength development characteristic based on the relation between temperature profile and strength development. With regard to the high-temperature curing characteristic of PC, we performed an experiment on the strength characteristic according to the temperature profile of high-strength mortar, and from the results of the experiment according to curing characteristic, displacement time, peak curing temperature, peak temperature duration, and ascending and descending gradient of temperature, we drew conclusions as follows.

Properties of Flexural Strength of Extrusion Molding Concrete Panel According to the Curing Conditions (양생조건에 따른 압출성형콘크리트 패널의 휨강도 특성)

  • Jung, Eun-Hye;Choi, Hun-Gug;Kim, Jae-Won;Seo, Jung-Pil;Park, Sun-Gyu;Kim, Jin-Man
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.441-444
    • /
    • 2006
  • Extrusion molding concrete panel is cured two times, that is the steam curing at atmospheric pressure and a high-pressure steam curing(autoclaving). Steam curing at atmospheric pressure is done before autoclaving and to acquire the proper strength for treat in process. Though this curing is the important factor on the quality of product and the speed in manufacturing process, it was not evaluated properly so far. Because of ignorance about curing, some engineers even think that the dry curing is better than the steam curing. This study is to investigate the properties of specimen according to variation of curing conditions in the coring chamber such as laboratory scale, pilot plant, and commercial plant. As estimating, in case of steam curing at atmospheric pressure to make extrusion molding concrete panel, moisture curing is better than dry curing and the desirable maximum temperature in curing chamber is about $50^{\circ}C$.

  • PDF

The Effects of Curing Environment and Submerged Pump Pressure on the Strength of High-Strength Grout (양생환경 및 수중펌프압송이 고강도 그라우트의 강도에 미치는 영향)

  • Kim, Beom-Hwi;Son, Da-Som;Yi, Chong-Ku
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.191-192
    • /
    • 2023
  • In recent years, the use of high-strength grout has gained popularity in offshore wind power generation complexes for facility foundations and bridges. These marine wind farms require support for horizontal loads from wind and waves. To ensure the strength of the grout produced in environments similar to the actual placing site, this study investigated the curing of high-strength grout discharged through pump pressure in various environments, and examined the difference in strength according to different variables. Compressive strength measurements revealed that the core specimen collected from the bottom (3cm) and uppermost (50cm) of the specimen exhibited lower strength compared to other height specimens, while the core specimen obtained from the corner exhibited lower strength compared to the center. These findings suggest that the strength difference between the center and the corner is more pronounced when curing at low temperatures. This effect is greater than the strength reduction that typically occurs during low-temperature curing, and thus, necessitates careful attention in similar construction environments.

  • PDF

The Influences of Additives and Curing Temperature on the Expansion Pressure of Calcium Oxide Hydration (생석회의 팽창압 발현에 미치는 첨가제 및 양생온도의 영향)

  • Kim, Won-Ki;Soh, Jeong-Soeb;Kim, Hoon-Sang;Kim, Hong-Joo;Lee, Won-Jun;Shin, Jin-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.9
    • /
    • pp.529-535
    • /
    • 2007
  • Calcium oxide has been used as a demolition agent in fracturing rocks and old concrete structures, etc. With the agent, demolition work can be done in safety without a noise, vibration and any other pollution, since high expansive pressure is obtained gradually by only mixing the agents with water and pouring the slurry into boreholes. But application of the non-explosive demolition agent is a time-consuming job, especially in winter. Essentially, this problem is related to the reaction rate of calcium oxide with water. This study examines the influence of additives such as cement and anhydrite on expansion pressure of calcium oxide at different curing temperatures. The expansion pressure of calcium oxide began to increase steadily with the rise of the curing temperature. When mixing calcium oxide alone with water, blown-out shot occurred. But as additives were added to calcium oxide, the reaction of calcium oxide delayed and the expansion pressure showed gradual increment. Especially, anhydrite showed a superior delaying effect than cement on the reaction of calcium oxide.

Forming Characteristics with Cavity Pressure and Temperature Signal Inside Mold in High-Pressure Resin Transfer Molding Process of Carbon Fiber Reinforced Composite Material (탄소섬유강화복합소재의 고압수지이송성형공정에서 금형 내 캐비티의 압력 및 온도신호에 따른 성형특성)

  • Han, Beom-Jeong;Jeong, Yong-Chai;Kim, Sung-Ryul;Kim, Ro-Won;Kang, Myung Chang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.6
    • /
    • pp.81-86
    • /
    • 2017
  • The high-pressure resin transfer molding (HP-RTM) process has a very effective for the mass production of carbon fiber reinforced plastic (CFRP) for light weight in the automotive industry. In developing robust equipment, new process and fast cure matrix systems reduces significantly the cycle time less than 5 minutes in recent years. This paper describes the cavity pressure, temperature and molding characteristics of the HP-RTM process. The HP-RTM mold was equipped with two cavity pressure sensors and three temperature sensors. The cavity pressure characteristics of the HP-RTM injection, pressurization, and curing processes were studied. This experiment was conducted with selected process parameters such as mold cap size, maximum press force, and injection volume. Consequently, this monitoring method provides correlations between the selected process parameters and final forming characteristics in this work.

A Preliminary Study on Mortar Strength Development by Low-Pressure Steam Curing Method (상압증기양생에 의한 모르터의 강도발현성에 관한 기초연구)

  • 곽영근;정상진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.194-199
    • /
    • 1994
  • Frefab Construction known for durable construction skill prompting high productivity in developed country is not yet settled in Korea. This situation of prefab construction results from lack of skill, specialists and quality control. In introducing skill, all equipments are thoughtlessly imported without inside eudeavor for development. Regardless of production of goods, basic study for production of goods, construction and structure is not abailable. The object of this study is curing method in the production process of PC concrete product. From change of curing temperature and curing period which would be factors of product quality in PC concrete production, and research of optimized steam curing condition from relations between curing condition and strength development, basic data of concrete steam curing method will be presented.

  • PDF

Properties of Lightweight Foamed Concrete According to Animality Protein Foaming Agent Type (동물성 기포제 종류별 경량기포 콘크리트의 특성)

  • Lim, Jeong-Jun;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.34-35
    • /
    • 2019
  • In recent years, the construction industry has also applied the dry method that can be assembled in the field by industrialization and factory production, which is free from climatic effects and can reduce the cost due to mass production and simplify the work in the field. Among the building materials used in this dry method, ALC products are made by mixing calcium oxide, gypsum, cement, and water in silica and putting them in an autoclave to create voids in the interior through steam curing at high temperature and pressure. But it requires curing cycle conditions of warming, isothermal, and temperature curing. It depends on the performance of the product depending on the curing conditions, the economical efficiency due to high oil prices, the emission of greenhouse gases by the use of fossil fuels. Experiments were conducted to select an appropriate animal protein foam for lightweight foamed concrete block which was cured by applying a prefilling method to replace existing ALC products. As a result of investigating the characteristics of lightweight foamed concrete by type of animal protein foam, it is considered that FP3 is most suitable for manufacturing lightweight foamed concrete block.

  • PDF

Effects of Variation in Process Parameters on Cavity Pressure and Mechanical Strength of Molded Parts in LSR Injection Molding (LSR 사출성형의 공정조건 변화가 캐비티 압력 및 성형품의 기계적 강도에 미치는 영향)

  • Park, Hyung Pil;Cha, Baeg Soon;Lee, Jeong Won;Ko, Young Bae;Kim, Sang Gweon;Jung, Tae Sung;Kim, Dong Han;Rhee, Byung Ohk
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.2
    • /
    • pp.206-212
    • /
    • 2014
  • Liquid silicone rubber (LSR) has been widely used in automotive, electrical, and medical components. Thus, research on the use of LSR in the injection molding process is required to obtain high-quality and high-performance products. In this study, a mold was fabricated to examine the effects of the process parameters on the molding and mechanical properties of LSR parts. A computer-aided engineering analysis was used to optimize the air vent depth and curing temperature to decrease the flash at the air vents caused by the low viscosity of LSR. Temperature and pressure sensors were mounted in the mold to determine the effects of the process parameters on the temperature and pressure in the cavity. The tensile strength of the LSR parts was also examined in relation to the process parameters.

A Study on the Measurement System Design for the Resin Flow and Curing in the Vacuum Assisted Resin Transfer Molding(VARTM) Process Using the Long Period Fiber Bragg Grating (삽입된 장주기 광섬유 격자를 이용한 VARTM 공정에서의 수지이동 및 변형 과정 예측 시스템 설계에 관한 연구)

  • Yoon, Young-Ki;Chung, Seung-Hwan;Lee, Woo-Il;Lee, Byoung-Ho;Byun, Joon-Hyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.5
    • /
    • pp.489-494
    • /
    • 2004
  • Long Period Gratings (LPG) is currently receiving considerable attention because of their consistent measuring results fur pressure, temperature, strain and flow. LPG is easier to prepare and has a high sensitivity compared with Fiber Bragg Gratings (FBG). In addition, this kind of optical fiber sensors could be used for implementations in various structures. In this paper, LPG was used to monitor in situ the resin flow and the curing process in VARTM (Vacuum Assisted Resin Transfer. Molding). In order to demonstrate the effectiveness of the method, FBG is inserted into the glass mat to monitor the resin flow using optical spectrum analyzer (OSA). The curing reactions in VARTM are also observed using the same method. From the results, the attenuation wavelength shift and the loss change of attenuation band can be obtained from the status of the RTM (Resin Transfer Molding) sample owing to the internal variations of the .effective index, temperature, and pressure. It is shown that the proposed LPG is more effective in monitoring the curing reaction than FBG.

Permeation Properties of Surface Modified Nanofiltration Membrane (표면 개질된 나노복합막의 투과 특성)

  • Tak Tae-Moon;Park Hyung-Kiu;Jang Gyung-Gug
    • Membrane Journal
    • /
    • v.14 no.3
    • /
    • pp.207-217
    • /
    • 2004
  • In this study, we prepared nanofiltration membrane by applying the interfacial polymerization method as a way of manufacturing composite membranes. We have examined the effects of various preparation factors such as monomer concentration and composition, thermal curing condition, post treatment condition. In addition to preparation conditions, we also monitored the effects of operation conditions such as feed solution concentration and operation pressure on the permeation properties of the resulting nanofiltration membrane. We intended to increase the permeation rate of nanofiltration membrane by the enlargement of effective surface area using additives during interfacial polymerization step. With increasing the monomer concentration, membrane permeation rate are decreased with maintaining almost constant rejection. With respect to curing condition, with increasing the curing temperature both permeation rate and rejection are decreased. With increasing the ratio of MPD in amino monomer composition, permeation rate decreased drastically with high rejection. With increasing the feed solution concentration, both permeation rate and rejection decreased. Both permeation rates and rejection increased with increasing the operating pressure. Nanofiltration membrane have higher surface roughness with increasing additive concentration in the case of using MPD contained amine composition than using piperazine alone. Permeation rates are much lower than the nanofiltration membrane prepared by piperazine.