• 제목/요약/키워드: high temperature wetting analysis

검색결과 12건 처리시간 0.025초

정적법을 이용한 Mg-Al계 합금과 순수 Ti의 고온 젖음현상 및 Al계면에서의 정합성에 미치는 영향 (Effects of Mg-Al Alloy and Pure Ti on High Temperature Wetting and Coherency on Al Interface Using the Sessile Drop Method)

  • 한창석;김우석
    • 한국재료학회지
    • /
    • 제31권1호
    • /
    • pp.38-42
    • /
    • 2021
  • In this study, high temperature wetting analysis and AZ80/Ti interfacial structure observation are performed for the mixture of AZ80 and Ti, and the effect of Al on wetting in Mg alloy is examined. Both molten AZ80 and pure Mg have excellent wettability because the wet angle between molten droplets and the Ti substrate is about 10° from initial contact. Wetting angle decreases with time, and wetting phenomenon continues between droplets and substrate; the change in wetting angle does not show a significant difference when comparing AZ80-Ti and Mg-Ti. As a result of XRD of the lower surface of the AZ80-Ti sample, in addition to the Ti peak of the substrate, the peak of TiAl3, which is a Ti-Al intermetallic compound, is confirmed, and TiAl3 is generated in the Al enrichment region of the Ti substrate surface. EDS analysis is performed on the droplet tip portion of the sample section in which pure Mg droplets are dropped on the Ti substrate. Concentration of oxygen by the natural oxide film is not confirmed on the Ti surface, but oxygen is distributed at the tip of the droplet on the Mg side. Molten AZ80 and Ti-based compound phases are produced by thickening of Al in the vicinity of Ti after wetting is completed, and Al in the Mg alloy does not affect the wetting. The driving force of wetting progression is a thermite reaction that occurs between Mg and TiO2, and then Al in AZ80 thickens on the Ti substrate interface to form an intermetallic compound.

The Wetting Properties of UBM-coated Si-wafer to the Lead-free Solders in Si-wafer/Bumps/Glass Flip-Chip Bonding System

  • Hong, Soon-Min;Park, Jae-Yong;Park, Chang-Bae;Jung, Jae-Pil;Kang, Choon-Sik
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2000년도 Proceedings of 5th International Joint Symposium on Microeletronics and Packaging
    • /
    • pp.74-79
    • /
    • 2000
  • In an attempt to estimate the wetting properties of wettable metal layers by wetting balance method, an analysis of wetting curves of the coating layer was performed. Based on the analysis, wetting properties of UBM-coated Si-plate were estimated by the new wettability indices. The wetting curves of the one and both sides-coated UBM layers have the similar shape and show the similar tendency to the temperature. So the wetting property estimation of one side coating is possible with wetting balance method. For UBM of Si-chip, Cr/Cu/Au UBM is better than Ti/Ni/Au in the point of wetting time. At general reflow temperature, the wettability of high melting point solders(Sn-Sb, Sn-Ag) is better than that of few melting point ones(Sn-Bi, Sn-In).The contact angle of the one side coated plate to the solder can be calculated from the farce balance equation by measuring the static state force and the tilt angle.

  • PDF

Investigation on nanoadhesive bonding of plasma modified titanium for aerospace application

  • Ahmed, Sabbir;Chakrabarty, Debabrata;Mukherjee, Subroto;Joseph, Alphonsa;Jhala, Ghanshyam;Bhowmik, Shantanu
    • Advances in aircraft and spacecraft science
    • /
    • 제1권1호
    • /
    • pp.1-14
    • /
    • 2014
  • Physico-chemical changes of the plasma modified titanium alloy [Ti-6Al-4V] surface were studied with respect to their crystallographic changes by X-Ray Diffraction (XRD) and Scanning Electron Microscope (SEM).The plasma-treatment of surface was carried out to enhance adhesion of high performance nano reinforced epoxy adhesive, a phenomenon that was manifested in subsequent experimental results. The enhancement of adhesion as a consequence of improved spreading and wetting on metal surface was studied by contact angle (sessile drop method) and surface energy determination, which shows a distinct increase in polar component of surface energy. The synergism in bond strength was established by analyzing the lap-shear strength of titanium laminate. The extent of enhancement in thermal stability of the dispersed nanosilica particles reinforced epoxy adhesive was studied by Thermo Gravimetric Analysis (TGA), which shows an increase in onset of degradation and high amount of residuals at the high temperature range under study. The fractured surfaces of the joint were examined by Scanning electron microscope (SEM).

Correlation between Carbon Steel Corrosion and Atmospheric Factors in Taiwan

  • Lo, C.M.;Tsai, L.H.;Hu, C.W.;Lin, M.D.
    • Corrosion Science and Technology
    • /
    • 제17권2호
    • /
    • pp.37-44
    • /
    • 2018
  • Taiwan has a typical marine climate featuring perennial high-temperature and dampness. This climate, together with the emission of various industrial corrosive waste gases in recent years, contributes a lot to the corrosion of metal materials. In this study, samples of carbon steel exposed to various atmospheres in Taiwan were analyzed to investigate the impacts of atmospheric factors on carbon steel corrosion. Carbon steel samples were collected from 87 experimental stations between 2009 and 2012. Statistical analysis was employed to investigate the correlations between the carbon steel corrosion situations and the atmospheric factors such as concentrations of sulfur dioxide or chloride, exposure time, rainfall, etc. The results indicate that for samples from industrial areas, the sulfur dioxide concentration and exposure time during fall and winter are significantly correlated to the condition of the carbon steel corrosion. However, for samples from coastal zones, the significant correlated factors are chloride concentration and wetting time during winter. The results of this study are useful for the development of carbon steel corrosion prediction models.

Low-Temperature Sintering Behavior of Aluminum Nitride Ceramics with Added Copper Oxide or Copper

  • Hwang, Jin-Geun;Oh, Kyung-Sik;Chung, Tai-Joo;Kim, Tae-Heui;Paek, Yeong-Kyeun
    • 한국세라믹학회지
    • /
    • 제56권1호
    • /
    • pp.104-110
    • /
    • 2019
  • The low-temperature sintering behavior of AlN was investigated through a conventional method. $CaF_2$, CuO and Cu were selected as additives based on their low melting points. When sintered at $1600^{\circ}C$ for 8 h in $N_2$ atmosphere, a sample density > 98% was obtained. The X-ray data indicated that eutectic reactions below $1200^{\circ}C$ were found. Therefore, the current systems have lower liquid formation temperatures than other systems. The liquid phase showed high dihedral angles at triple grain junctions, indicating that the liquid had poor wettability on the grain surfaces. Eventually, the liquid was likely to vaporize due to the unfavorable wetting condition. As a result, a microstructure with clean grain boundaries was obtained, resulting in higher contiguity between grains. From EDS analysis, oxygen impurity seems to be well removed in AlN lattice. Therefore, it is believed that the current systems are beneficial for reducing sintering temperature and improving oxygen removal.

Electrical Interconnection with a Smart ACA Composed of Fluxing Polymer and Solder Powder

  • Eom, Yong-Sung;Jang, Keon-Soo;Moon, Jong-Tae;Nam, Jae-Do
    • ETRI Journal
    • /
    • 제32권3호
    • /
    • pp.414-421
    • /
    • 2010
  • The interconnection mechanisms of a smart anisotropic conductive adhesive (ACA) during processing have been characterized. For an understanding of chemorheological mechanisms between the fluxing polymer and solder powder, a thermal analysis as well as solder wetting and coalescence experiments were conducted. The compatibility between the viscosity of the fluxing polymer and melting temperature of solder was characterized to optimize the processing cycle. A fluxing agent was also used to remove the oxide layer performed on the surface of the solder. Based on these chemorheological phenomena of the fluxing polymer and solder, an optimum polymer system and its processing cycle were designed for high performance and reliability in an electrical interconnection system. In the present research, a bonding mechanism of the smart ACA with a polymer spacer ball to control the gap between both substrates is newly proposed and investigated. The solder powder was used as a conductive material instead of polymer-based spherical conductive particles in a conventional anisotropic conductive film.

아르곤 저온 플라즈마 처리에 의한 CTA 필름의 접착성 연구 (A Study on Adhesive Properties of Cellulose Triacetate Film by Argon Low Temperature Plasma Treatment)

  • 구강;박영미
    • 한국염색가공학회지
    • /
    • 제16권5호
    • /
    • pp.28-34
    • /
    • 2004
  • The polarizing film application exploits the unique physicochemical properties between PVA(Poly vinyl alcohol) film and CTA(Cellulose triacetate) film. However, hardly any research was aimed at improving the adhesion characteristics of the CTA film by radio frequency(RF) plasma treatment at argon(Ar) gaseous state. In this report, we deal with surface treatment technology for protective CTA film developed specifically for high adhesion applications. After Ar plasma, surface of the films is analyzed by atomic force microscopy(AFM), roughness parameter and peel strength. Furthermore, the wetting properties of the CTA film were studied by contact angle analysis. Results obtained for CTA films treated with a glow discharge showed that this technique is sensitive to newly created physical functions. The roughness and peel strength value increased with an increase in treatment time for initial treatment, but showed decreasing trend for continuous treatment time. The result of contact angle measurement refer that the hydrophilicity of surface was increased. AFM studies indicated that no considerable change of surface morphology occurred up to 3 minutes of treatment time, but a considerable uneven of surface structure resulted from treating time after 5 minutes.

VISUALIZATION AND MEASUREMENT OF A NARROW-CONE DI GASOLINE SPRAY FOR THE IMPINGEMENT ANALYSIS

  • Park, J.S.;Im, K.S.;Kim, H.S.;Lai, M.C.
    • International Journal of Automotive Technology
    • /
    • 제5권4호
    • /
    • pp.221-238
    • /
    • 2004
  • Wall interactions of direct injection spray were investigated using laser-sheet imaging, shadowgraphy, wetted footprint and phase Doppler interferometry techniques. A narrow-cone high-pressure swirl injector is used to inject iso-octane fuel onto a plate, which has three different impact angles inside a pressurized chamber. Heated air and plate conditions were compared with unheated cases. Injection interval was also varied in the heated case to compare dry- and wet- wall impingement behaviors. High-speed macroscopic Mie-scattering images showed that presence of wall and air temperature has only minor effect on the bulk spray structure and penetration speed for the narrow-cone injector tested. The overall bulk motions of the spray plume and its spatial position at a given time are basically unaffected until a few millimeters before impacting the wall. The surface properties of the impact surface, such as the temperature, the presence of a preexisting liquid film also have a small effect on the amount of wetting or the wetted footprint; however, they have strong influence on what occurs just after impact or after a film is formed. The shadowgraph in particular shows that the plate temperature has a significant effect on vapor phase propagation. Generally, 10-20% faster horizontal vapor phase propagation is observed along the wall at elevated temperature condition. For impingement onto a preexisting film, more splash and evaporation were also observed. Contrary to some preconceptions, there is no significant splashing and droplet rebounding from surfaces that are interposed in the path of the DI gasoline spray, especially for the oblique impact angle cases. There also appears to be a dense spray front consists of large sac spray droplets in the oblique impact angle cases. The bulk of the spray is not impacted on the surface, but rather is deflected by it The microscopic details as depicted by phase Doppler measurements show that the outcome of the droplet impaction events can be significantly influenced. Only droplets at the spray front have high enough Weber numbers for wall impact to wet, splash or rebound. Using the sign of vertical velocity, the time-resolved downward droplets and upward droplets are compared. The Weber number of upward moving droplets, which seldom exceeds unity, also decreases as the impact angle decreases, as the droplets tend to impact less and move along the wall in the deflected spray plume.

선박 스팀파이프용의 고내구성 도장 사양 개발 연구 (Development of the High-quality Coating System for the Steam Pipe of Ship)

  • 이성균;백광기;황동언;송은하
    • 대한조선학회 특별논문집
    • /
    • 대한조선학회 2006년도 특별논문집
    • /
    • pp.46-52
    • /
    • 2006
  • For ships, heat resistant coating is applied on the aluminized steel pipe systems dealing with high temperature steam over $200^{\circ}C$. The coatings on these steam pipes should retain both heat resistance and anti-corrosion properties to provide long-term resistance against coating defects (rust, delamination and crack) under the harsh outdoor environment including repeated seawater wetting and condensation. Thus, it is important to improve the coating qualities and to reduce maintenance works for these steam pipe systems. In this study, five different commercial heat resistant coatings (A, B, C, D, E) were selected for evaluation. Various physical properties of these coatings were evaluated on the coatings applied on the aluminized steam pipes. FT-IR analysis was also employed to identify the factors contributing the degree of heat resistance and durability of each coating material. The results indicated that the heat resistance capacity of coatings increased with the increase of silicon content as well as the decrease of substituent content. Both products C and D showed the best coating qualifies, which can be standard coating systems for future steam pipe areas.

  • PDF

불포화토의 열·탄소성 거동 분석을 위한 Barcelona Basic Model 소개 (Introduction of Barcelona Basic Model for Analysis of the Thermo-Elasto-Plastic Behavior of Unsaturated Soils)

  • 이창수;윤석;이재원;김건영
    • 터널과지하공간
    • /
    • 제29권1호
    • /
    • pp.38-51
    • /
    • 2019
  • Barcelona Basic Model(BBM)은 응력의 변화에 따른 부피변화뿐만 아니라 흡입력의 변화에 따른 팽윤거동을 설명할 수 있으며, 흡입력 변화에 따른 점착력과 선행압밀응력의 변화와 온도변화에 따른 선행압밀응력의 변화를 고려할 수 있다. 따라서, 고준위방사성폐기물 처분시스템에서 공학적방벽재로 고려되고 있는 벤토나이트 완충재의 열-수리-역학적 복합거동을 예측 및 분석하는 것에 많이 활용되고 있다. 그러나 우리나라의 암반 및 지반 공학자들에게 잘 알려져 있지 않기 때문에 BBM을 소개하고자 한다. BBM은 불포화 토질의 역학적 거동을 모사하기 위해 Modified Cam Clay(MCC) 모델을 확장하여 만들어 졌기 때문에 본 고에서는 먼저 MCC 모델을 간략하게 소개하고, 열-탄소성 모델인 BBM을 상세히 소개하였다.