• Title/Summary/Keyword: high temperature strength

Search Result 3,015, Processing Time 0.033 seconds

Evaluation of Bond Strength Properties with Changing the Aspect Ratio and Temperature of Concrete (콘크리트의 형상비 및 온도변화에 따른 부착강도 특성평가)

  • Kim, Hyun Seok;Jung, Won Kyong;Oh, Han Jin;Park, Jun Young;Kim, Hyung Bae
    • International Journal of Highway Engineering
    • /
    • v.20 no.3
    • /
    • pp.19-26
    • /
    • 2018
  • PURPOSES : The main purpose of this study is suggest of field bond strength evaluation method for more objective evaluation method through Evaluation of Bond Strength Properties with changing aspect ratio and temperature. METHODS : The evaluation is laboratory bond strength test. Using the core machine, the pull-off test method ; the bond strength test of interface layer the universal testing machine. RESULTS : As a result of the laboratory bond strength evaluation, it was verified that the bond strength by aspect ratio decreases linearly with increasing aspect ratio and the bond strength properties by temperature change existed at high and low temperature condition relative to odinary temperature condition. CONCLUSIONS : According to the results of laboratory bond strength evaluation, the field bond strength evaluation results suggest applying the proposed correction factor (0.8, 1.0, 1.4, 1.9) according to aspect ratio(0.5, 0.1, 1.5, 2.0), For more objective evaluation of the bond strength, it is analyzed that the evaluation value is within $6{\sim}32^{\circ}C$ and the result can be obtained within 5% of the coefficient of variation.

A New Approach of Strength Prediction of High Strength Concrete by the Equivalent Age (적산온도기법에 의한 고강도콘크리트의 강도예측)

  • Kwon, Young-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.2
    • /
    • pp.177-183
    • /
    • 2004
  • The maturity concept is based on the fact that concrete gains strength with time as a result of the cement hydration and, thus the strength of concrete is related to the degree of hydration of the cement in concrete. The rate of hydration, as in any chemical reaction, depends primarily on the concrete temperature during hydration. Therefore, the aim of the study is to investigate of the correlation between strength of high-strength concrete and maturity that is expressed as a function of an integral of the curing period and temperature.

Local bond-slip behavior of fiber reinforced LWAC after exposure to elevated temperatures

  • Tang, Chao-Wei
    • Structural Engineering and Mechanics
    • /
    • v.73 no.4
    • /
    • pp.437-445
    • /
    • 2020
  • The microstructure and mechanical properties of concrete will degrade significantly at high temperatures, thus affecting the bond strength between reinforcing steel and surrounding concrete in reinforced concrete members. In this study, the effect of individual and hybrid fiber on the local bond-slip behavior of lightweight aggregate concrete (LWAC) after exposure to elevated temperatures was experimentally investigated. Tests were conducted on local pullout specimens (150 mm cubes) with a reinforcing bar embedded in the center section. The embedment lengths of the pullout specimens were 4.2 times the bar diameter. The parameters investigated included concrete type (control group: ordinary LWAC; experimental group: fiber reinforced LWAC), concrete strength, fiber type, and targeted temperature. The test results showed that for medium-strength LWACs exposed to high temperatures, the use of only steel fibers did not significantly increase the residual bond strength. Moreover, the addition of individual and hybrid fiber had little effect on the residual bond strength of the high-strength LWAC after exposure to a temperature of 800℃.

Effect of curing temperature and blast furnace slag concrete on concrete strength development (양생온도가 고로슬래그 콘크리트의 강도발현에 미치는 영향분석)

  • Lee, Kyu-Dong;Jun, Myeong-Il;Lee, Chang-Soo;Kim, Dong-Sik
    • Journal of the Society of Disaster Information
    • /
    • v.2 no.1
    • /
    • pp.129-137
    • /
    • 2006
  • The present work is attempt to evaluate the temperature dependence of blast furnace slag concrete(BFSC) based on the concrete strength cured with different curing temperatures and ages. A equivalent substitution index(ESI) was induced to explain temperature dependence of concrete quantitatively as well as concrete strength. The results from compressive strength showed substantial crossover effect. which is the phenomenon that the compressive strength cured at low temperature becomes stronger than the one cured at high temperature. The crossover effect found more definitely on BFSC than plain concrete.. The ESI became 1.1 and 1.0 for the BFSC cured at $20^{\circ}C$ and $30^{\circ}C$ after age of 56 days, respectively. Which means that the contribution to strength development of blast furnace slag per unit mass is stronger than that of the Portland cement. It was considered therefore that the optimum curing temperature for BFSC is $20^{\circ}C$.

  • PDF

Effect of Curing Temperature on Early Age Strength Development of the Concrete Using Fly Ash (양생온도가 플라이애시를 사용한 콘크리트의 초기강도발현에 미치는 영향)

  • Han, Min-Cheol;Shin, Byung-Chuel
    • Journal of Environmental Science International
    • /
    • v.19 no.1
    • /
    • pp.105-114
    • /
    • 2010
  • The objective of the paper is to experimentally investigate the compressive strength of the concrete incorporating fly ash. Ordinary Portland cement(OPC). Water to binder ratio(W/B) ranging from 30% to 60% and curing temperature ranging from $-10^{\circ}{\sim}65^{\circ}C$ were also adopted for experimental parameters. Fly ash was replaced by 30% of cement contents. According to the results, strength development of concrete contained with fly ash is lower than that of plain concrete in low temperature at early age and maturity. In high curing temperature, the concrete with fly ash has higher strength development than that of low temperature regardless of the elapse of age and maturity. Fly ash can have much effect on the strength development of concrete at the condition of mass concrete, hot weather concreting and the concrete products for the steam curing.

High Temperature Properties of Fire Protection Materials Using Fly Ash and Meta-Kaolin (Fly Ash 및 Meta-Kaolin을 활용한 내화성 마감재의 고온특성)

  • Song, Hun;Chu, Yong-Sik;Lee, Jong-Kyu;Do, Jeong-Yun
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.3
    • /
    • pp.223-231
    • /
    • 2010
  • The serious issue of tall building is to ensure the fire-resistance of high strength concrete. The fire resistant finishing method is necessarily essential in order to satisfy the fire resistance time of 3 h required by the law. The fire resistant finishing method is installed by applying a fire resistant material as a method of shotcrete or a fire resistant board to high strength concrete surface. This method can reduce the temperature increase of the reinforcement embedded in high strength concrete at high temperature due to the installation thickness control. This study is interested in identifying the effectiveness of inorganic alumino-silicate compounds including the inorganic admixture such as fly ash and meta-kaolin as the fire resistant finishing materials through the analysis of fire resistance and components properties at high temperature. The study results show that the fire resistant finishing material composed of fly ash and meta-kaolin has the thermal stability of the slight decrease of compressive strength at high temperature. These thermal stability is caused by the ceramic binding capacity induced by alkali activation reaction by the reason of the thermal analysis result not showing the decomposition of calcium hydrate. Inorganic compounds composed of fly ash and meta-kaolin is evaluated to be very effective as the fire resistance material for finishing to protect the concrete substrate by the reason of those simplicity in both application and manufacture. The additional study about the adhesion in the interface with concrete substrate is necessary for the purpose of the practical application.

Degradation Propeties of Alkali-Activated Alumino-Silicate Composite Body Exposed to High Temperature (알칼리 활성화 알루미노실리케이트계 경화체의 고온 열화 특성)

  • Kim, Won-Ki;Kim, Hong-Joo;Lee, Seung-Heun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.627-630
    • /
    • 2005
  • This paper examines degradation properties of alkali-activated alumino-silicate composite body by NAS solution exposed to high temperature. Activators include sodium hydroxides and sodium silicate solution. In the result of experiment, flexural and compressive strength of AAS base mortar exposed to high temperature ($400\~600^{\circ}C$) was higher than alumina cement base mortar. Particularly, In case of compressive strength, alumina cement base mortar was decreased by about $60\~70\%$. While, AAS base mortar exposed to high temperature ($400\~600^{\circ}C$) was higher than that curing by room temperature. The above results showed that AAS base inorganic binder has a good mechanical properties exposed to high temperature($400\~600$).

  • PDF

Evaluation of Deterioration of Concrete due to High Temperature through Harmonics (고조파 평가를 통한 콘크리트의 고온 열화 평가)

  • Hwang, Eui-Chul;Kim, Guy-Yong;Son, Min-Jae;Pyeon, Su-Jeong;Sasui, Sasui;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.146-147
    • /
    • 2021
  • In this study, the deterioration of concrete subjected to high temperature was evaluated using harmonics. When concrete is exposed to high temperatures, its mechanical properties deteriorate. In order to evaluate this deterioration, a method of analyzing the waveform of elastic waves was applied. As the heating temperature increased, the fundamental wave of the 50 kHz elastic wave passing through the concrete decreased. In addition, harmonics were generated at each temperature, and the higher the heating temperature, the greater the ratio of harmonics. The higher the compressive strength, the greater the amplitude of the fundamental wave, and this phenomenon is thought to be due to the internal structure of concrete.

  • PDF

Temperature development and cracking characteristics of high strength concrete slab at early age

  • Wu, Chung-Hao;Lin, Yu-Feng;Lin, Shu-Ken;Huang, Chung-Ho
    • Structural Engineering and Mechanics
    • /
    • v.74 no.6
    • /
    • pp.747-756
    • /
    • 2020
  • High-strength concrete (HSC) generally is made with high amount of cement which may release large amount of hydration heat at early age. The hydration heat will increase the internal temperature of slab and may cause potential cracking. In this study, slab specimens with a dimension of 600 × 600 × 100 mm were cast with concrete incorporating silica fume for test. The thermistors were embedded in the slabs therein to investigate the interior temperature development. The test variables include water-to-binder ratio (0.25, 0.35, 0.40), the cement replacement ratio of silica fume (RSF; 5 %, 10 %, 15 %) and fly ash (RFA; 10 %, 20 %, 30 %). Test results show that reducing the W/B ratio of HSC will enhance the temperature of first heat peak by hydration. The increase of W/B decrease the appearance time of second heat peak, but increase the corresponding maximum temperature. Increase the RSF or decrease the RFA may decrease the appearance time of second heat peak and increase the maximum central temperature of slab. HSC slab with the range of W/B ratio of 0.25 to 0.40 may occur cracking within 4 hours after casting. Reducing W/B may lead to intensive cracking damage, such as more crack number, and larger crack width and length.

A Study on the Machinability of High Strength Steel with Internally Cooled Cutting Tool (공구내부냉각에 의한 고장력합금강의 피삭성에 관한 연구)

  • 김정두
    • Tribology and Lubricants
    • /
    • v.5 no.1
    • /
    • pp.44-50
    • /
    • 1989
  • High strength steel is similar to carbon steel in its composition. This material is developed originally for special uses such as aerospace and automobile due to its high strength and shock-free property in spite of lightness. But the chemical attraction of high strength steel is serious, which includes comminution of formation, metalization and strengthening. Machining results in built-up edge between this material and the tool. Especially the work hardening behavior results in tool life shortening, which was caused by temperature generation during machining. In this study, cooling system was made in which liquid nitrogen is supplied to circulate in order to make up for these weaknesses. Machining of high strength steels, which is recognized as difficult to machine materials, was conducted after tool is cooled at -195$\circ$C. Experimental results showed that the tool was cooled down rapidly below -195$\circ$C in about 200 seconds. The tool temperature of machining with cooling system was lowered by 60~95$\circ$C than that of machining in room temperature. The hardness of the surface of chip is decreased by machining with cooling system. And the machining using the cooling system made it possible to increase shear angle, to retain smooth surface on chip without built-up-edge and to get a better roughness.