• Title/Summary/Keyword: high temperature state

Search Result 1,596, Processing Time 0.031 seconds

High Pressure X-Ray Diffraction Study on a Goethite using Synchrotron Radiation (방사광을 이용한 괴타이트에 대한 고압 X-선 회절연구)

  • 김영호;이지은
    • Journal of the Mineralogical Society of Korea
    • /
    • v.10 no.2
    • /
    • pp.75-81
    • /
    • 1997
  • High pressure X-ray diffraction study was carried out on a natural FeO(OH)-goethite to investigate its compressibility at room temperature. Energy dispersive X-ray diffraction method was employed using Mao-Bell type diamond anvil cell with Synchrotron Radiation. MgO powder was compressed together with goethite for the high pressure determinations. Bulk modullus was determined to be 147.9 GPa by the Birch-Murnaghan equation of state under assumption of K0' of 4. This value was subjected to compare with its structural analogs and related materials.

  • PDF

A Study on the Fundamental Properties of High-Strength Concrete Using Ground Granulated Blast-Furnace Slag as an Admixture (고로슬래그 분말을 혼화재로 사용한 고강도콘크리트의 기초적 성질에 대한 연구)

  • 문한영;최연왕;문대중;송용규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.30-35
    • /
    • 1995
  • This paper presents fundamental experiment for the properties of high performance concrete in its fresh and hardened state made with ground granulated blast-furnace (GGBF) slag. The result is that the effect of decreasing xoncrete temperature is to the mixing ratio of GGBF slag, but it presents disadvantage in the slump loss phase. In addition to, we know that the splitting tensile strength, compressive strength and elastic modulus of concrete mixed with high fineness GGBF slag are increased at age 28days.

  • PDF

The manufacturing Improvement of high VacuumExhausted Sealing Equipment (고진공배기 시스템 장치개발에 관한연구)

  • Kim, Soo-Yong;Lee, Oh-Keol
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1795-1797
    • /
    • 2001
  • This machine is a high-vacuum exhaust sealing device which makes the inside of PDP element in high vacuum state, blows inactive gases into it and finally seals it. This machine consists of vacuuming parts, heating parts and exhausting parts. Applying the energy saving technology, this machine improves the temperature uniformity of vacuuming and heating parts.

  • PDF

Numerical Study on the Thermal Model of High Power Density Welding (고에너지 밀도용접의 온도특성에 관한 수치해석적 연구)

  • 이성호;고상근
    • Journal of Welding and Joining
    • /
    • v.10 no.2
    • /
    • pp.19-31
    • /
    • 1992
  • A numerical study was performed to investigate the flow field and the heat transfer characteristics occurring in high power density welding which is important in many fields of engineering applications. A two dimensional quasi-steady state of keyhole welding model is simulated by using the finite volume methods. It is shown that the shape of isothermal line is elliptic and the temperature gradient is very steep compared with other welding method and the welding speed has on welding width and observed beam power.

  • PDF

Characterization of the effect of He+ irradiation on nanoporous-isotropic graphite for molten salt reactors

  • Zhang, Heyao;He, Zhao;Song, Jinliang;Liu, Zhanjun;Tang, Zhongfeng;Liu, Min;Wang, Yong;Liu, Xiangdong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1243-1251
    • /
    • 2020
  • Irradiation-induced damage of binderless nanoporous-isotropic graphite (NPIG) prepared by isostatic pressing of mesophase carbon microspheres for molten salt reactor was investigated by 3.0 MeV He+ irradiation at room temperature and high temperature of 600 ℃, and IG-110 was used as the comparation. SEM, TEM, X-ray diffraction and Raman spectrum are used to characterize the irradiation effect and the influence of temperature on graphite radiation damage. After irradiation at room temperature, the surface morphology is rougher, the increase of defect clusters makes atom flour bend, the layer spacing increases, and the catalytic graphitization phenomenon of NPIG is observed. However, the density of defects in high temperature environment decreases and other changes are not obvious. Mechanical properties also change due to changes in defects. In addition, SEM and Raman spectra of the cross section show that cracks appear in the depth range of the maximum irradiation dose, and the defect density increases with the increase of irradiation dose.

Vaporization of Hydrocarbon Fuel Droplet in Supercritical Environments (아임계 및 초임계 탄화수소 연료 액적의 기화 특성 연구)

  • Lee,Gyeong-Jae;Lee,Bong-Su;Kim,Jong-Hyeon;Gu,Ja-Ye
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.7
    • /
    • pp.85-93
    • /
    • 2003
  • Droplet vaporization at various ambient pressures is studied numerically by formulating one dimensional evaporation model in the mixture of hydrocarbon fuel and air. The ambient pressure ranged from atmospheric conditions to the supercritical conditions. The modified Soave-Redlich-Kwong state equation is used to account for the real gas effects in the high pressure condition. Non-ideal thermodynamic and transport properties at near critical and supercritical conditions are considered. Some computational results are compared with Sato's experimental data for the validation of calculations. The comparison between predictions and experiments showed quite a good agreement. The droplet lifetime increases with increasing pressure at temperature lower than the critical temperature, however, it decreases with increasing pressure at temperature higher than the critical temperature. The solubility of nitrogen can not be neglected in the high pressure and it becomes higher as the temperature and the pressure go up.

Electrical characteristics of Au/3C-SiC/Si/Al Schottky, diode (Au/3C-SiC/Al 쇼터키 다이오드의 전기적 특성)

  • Shim, Jae-Cheol;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.65-65
    • /
    • 2009
  • High temperature silicon carbide Schottky diode was fabricated with Au deposited on poly 3C-SiC thin film grown on p-type Si(100) using atmospheric pressure chemical vapor deposition. The charge transport mechanism of the diode was studied in the temperature range of 300 K to 550 K. The forward and reverse bias currents of the diode increase strongly with temperature and diode shows a non-ideal behavior due to the series resistance and the interface states associated with 3C-SiC. The charge transport mechanism is a temperature activated process, in which, the electrons passes over of the low barriers and in turn, diode has a large ideality factor. The charge transport mechanism of the diode was analyzed by a Gaussian distribution of the Schottky barrier heights due to the Schottky barrier inhomogeneities at the metal-semiconductor interface and the mean barrier height and zero-bias standard deviation values for the diode was found to be 1.82 eV and $s_0$=0.233 V, respectively. The interface state density of the diode was determined using conductance-frequency and it was of order of $9.18{\times}10^{10}eV^{-1}cm^{-2}$.

  • PDF

Wet Chemical Preparation of Li-rich LiMn$_2$O$_4$ Spinel by Oxalate Precipitation (Oxalate 침전을 이용한 Li-과량 LiMn$_2$O$_4$ Spinel의 습식합성가 분말 특성)

  • 이병우;김세호
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.7
    • /
    • pp.698-704
    • /
    • 1999
  • Li rich Li1+xMn2-xO4(x=0.07) spinel powders were prepared by an oxalate precipitation of wet chemical methods at temperature lower than $600^{\circ}C$. The FTIR results showed that the powders prepared at $600^{\circ}C$ had high degree of crystal quality comparing with the spinel powders prepared by solid state reaction at 75$0^{\circ}C$ which was the lowest synthesis temperature of the solid state reaction method. The particle size of powders prepared by the oxalate precipitation at $600^{\circ}C$ was smaller than 0.2${\mu}{\textrm}{m}$ and the specific surface area was 11.01 m2/g A heat treatment over 90$0^{\circ}C$ formed second phase in the precipitates. It was shown that there were phase transitions at temperatures. T1,T2 and T2. The transitions involved weight loss and gain during heating and cooling. The low temperature synthesis below $600^{\circ}C$ avoided the second phase formation and the prepared powders showed improved compositional and physical properties for secondary lithium battery applications.

  • PDF

Real operation of 2 kW class reverse-Brayton refrigeration system with using scroll compressor package

  • Kim, Hyobong;Yeom, Hankil;Choo, Sangyoon;Kim, Jongwoo;Park, Jiho;In, Sehwan;Hong, Yong-Ju;Park, Seong-Je;Ko, Junseok
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.4
    • /
    • pp.40-44
    • /
    • 2020
  • This paper describes the real operation of 2 kW class reverse-Brayton refrigeration system with neon as a working fluid. The refrigeration cycle is designed with operating pressure of 0.5 and 1.0 MPa at low and high pressure side, respectively. Compressor package consists of several helium scroll compressors witch are originally used for driving GM cryocooler. Three segments of plate heat exchanger are adopted to cover the wide temperature range and the refrigeration power is produced by turbo expander. The developed refrigeration system is successfully operated at its target temperature of 77 K. In experiments, all parameters such as pressure, temperature, mass flow rate and valve opening are measured to investigate characteristics during cool-down process and normal state. The difference between design and real operation is discussed with measured experimental data. At normal state of 77 K operation, the developed reverse-Brayton refrigeration system shows 1.83 kW at 68.2 K of cold-end temperature.

The Study on the Physicochemical Properties of Fluid under High Pressure (Ⅱ). The Effect of Pressure and Temperature on the Hexamethyl Benzene-Iodine Charge Transfer Complex in n-Hexane

  • Kwun Oh Cheun;Kim Jeong Rim
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.4
    • /
    • pp.186-191
    • /
    • 1985
  • The effect of pressure and temperature on the stabilities of the charge transfer complexes of hexamethyl benzene with iodine in n-hexane has been investigated by UV-spectrophotometric measurements. In this experiment the absorption spectra of mixed solutions of hexamethyl benzene and iodine in n-hexane were measured at 25, 40 and $60^{\circ}C$ under 1,200, 600, 1200 and 1600 bar. The equilibrium constant of the complex formation was increased with pressure while being decreased with temperature raising. Changes of volume, enthalpy, free energy and entropy for the formation of the complexes were obtained from the equilibrium constants. The red shift at higher pressure, the blue shift at higher temperature and the relation between pressure and oscillator strength were discussed by means of thermodynamic functions. In comparison with the results in the previous studies, it can be seen that the pressure dependence of oscillator strength has a extremum behavior in durene as the variation of ${\Delta}H$ or ${\Delta}S$ with the number of methyl groups of polymethyl benzene near atmospheric pressure in the previous study. The shift or deformation of the potential in the ground state and in the excited state of the complexes formed between polymethyl benzene and iodine was considered from the correlation between the differences of the electron transfer energies and the differences of free energies of the complex formation for the pressure variation.