• Title/Summary/Keyword: high temperature piezoelectric material

Search Result 87, Processing Time 0.031 seconds

Evolution of Remnant State Variables and Linear Material Moduli in a PZT Cube under Compressive Stress at Room and High Temperatures (상온과 고온에서 압축하중을 받는 PZT에서의 잔류상태변수와 선형재료상수의 변화)

  • Ji, Dae Won;Kim, Sang-Joo
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.1
    • /
    • pp.82-86
    • /
    • 2013
  • A poled lead zirconate titanate (PZT) cube specimen is subjected to impulse-type compressive stress with increasing magnitude in parallel to the poling direction at four room and high temperatures. During the ferroelastic domain switching induced by the compressive stress, electric displacement in the poling direction and longitudinal and transverse strains are measured. Using the measured responses, linear material properties, namely, the piezoelectric and elastic compliance coefficients, are evaluated by a graphical method, and the effects of stress and temperature are analyzed. Finally, the dependency of the evaluated linear material properties on relative remnant polarization is analyzed and discussed.

A study on the c-axis orientation of ZnO thin film deposited on glass substrates (유리기판에 제작한 ZnO 박막의 c축 배향성에 관한 연구)

  • 고상춘;이종덕;송준태
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.9-13
    • /
    • 1995
  • In this paper, Zinc Oxide films, with a high degree of c-axis orientation, have been grown on glass substrates by a rf magnetron sputtering. The maximum crystal orientation was found to occur with substrate temperature 150$^{\circ}C$, input power 190W, oxygen rate 50%, target-substrate distance 55mm. It is proposed to achieve high-resistivity ZnO films by increasing the annealing temperature. The piezoelectric layers, preferred oriented with (002) perpendicular to the layer with 4.9$^{\circ}$, could be obtained by the annealing temperature 300$^{\circ}C$ in oxygen atmosphere. It is indicated that the relative permittivity is range from 8.9 to 9.8 in the frequency ranging from 10KHz to 5MHz.

  • PDF

A study on the crystallographic properties of ZnO thin films for FBAR (FBAR용 ZnO 박막의 결정학적 특성에 관한 연구)

  • Keum, M.J.;Park, W.H.;Yoon, Y.S.;Choe, Hyeong-Uk;Shin, Y.H.;Choe, Dong-Jin;Kim, K.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.703-706
    • /
    • 2002
  • Piezoelectric thin film such as ZnO and AlN can be applicable to FBAR (Film Bulk Acoustic Resonator) device of thin film type and FBAR can be applicable to MMIC. The characteristic of FBAR device is variable according to the deposition conditions of piezoelectric thin film when preparation of thin film by sputtering method. In this study, we prepared ZnO thin film for FBAR using Facing Targets Sputtering apparatus which can be deposited fine Quality thin film because temperature increase of substrate due to the bombardment of high-energy particles can be restrained. And crystalline and c-axis preferred orientation of ZnO thin film with deposition conditions was investigated by XRD.

  • PDF

Broadband Piezoelectric Energy Harvesting Technology (광대역 압전 에너지 하베스팅 기술)

  • Lee, Dong-Gyu;Yee, Yeon-Jeong;Song, Hyun-Cheol
    • Ceramist
    • /
    • v.22 no.1
    • /
    • pp.56-69
    • /
    • 2019
  • Recent advances in low-power sensors and transmitters are driving the search for standalone power sources that utilize unused ambient energy. These energy harvesters can alleviate the issues related to the installation and maintenance of sensors. Particularly piezoelectric energy harvesters, with the ability to convert ambient mechanical energy into useful electricity, have received significant attention due to their high energy density, low cost and operational stability over wide temperature and pressure conditions. In order to maximize the generated electrical power, the natural frequency of the piezoelectric energy harvester should be matched with the dominant frequency of ambient vibrations. However, piezoelectric energy harvesters typically exhibit a narrow bandwidth, thus, it becomes difficult to operate near resonance under broadband ambient vibration conditions. Therefore, the resonating of energy harvesters is critical to generate maximum output power under ambient vibration conditions. For this, energy harvesters should have broadband natural frequency or actively tunable natural frequency with ambient vibrations. Here, we review the most plausible broadband energy harvesting techniques of the multi-resonance, nonlinearity, and self-resonance tuning. The operation mechanisms and recent representative studies of each technique are introduced and the advantages and disadvantages of each method are discussed. In addition, we look into the future research direction for the broadband energy harvester.

A Study on the PZT Application for Spacecraft Components under Space Environment (우주환경하의 위성부품용 압전진동자 활용에 관한 연구)

  • Lee, Sang-Hoon;Moon, Guee-Won;Yoo, Seong-Yeon
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.6
    • /
    • pp.287-294
    • /
    • 2012
  • In the high vacuum condition of the space, outgassing from any assembly of satellite can contaminate satellites, especially second surface mirror and optical lens, it cause satellite to fail in own missions. Therefore, all unit shall be check for compatibility with vacuum using CVCM (Collected Volatile Condensable Material) and TML (Total Mass Loss) in advance. CVCM and TML of the PZT-5 piezoelectric ceramic vibrator has less than 0.1% and 1.0% respectively. Also, it has less than 500 $ng/cm^2/hr$ of Thermoelectric Quartz Crystal Microbalance for vacuum bake-out test using high temperature(more than $80^{\circ}C$) and high vacuum (less than $5.0{\times}10^{-3}$ Pa). Thus, piezoelectric ceramic vibrator may be employed in the vacuum environments. Finally, it can be confirmed that the characteristics change of the piezoelectric ceramic vibrator is less than 1% under vacuum environments.

Synthesis of Ag-Pd Electrode having Oxide Additive (산화물을 첨가한 Ag-Pd 전극의 제조)

  • Lee, Jae-Seok;Lee, Dong-Yoon;Song, Jae-Sung;Kim, Myoung-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.735-738
    • /
    • 2003
  • Downsizing electronics requires precision position control with an accuracy of sub-micron order, which demands development of ultra-fine displacive devices. Piezoelectric transducer is one of devices transferring electric field energy into mechanical energy and being capable for fine displacement control. The transducer has been widely used as fine Position control device Multilayer piezoelectric actuator, one of typical piezo-transducer, is fabricated by stacking alternatively ceramic and electrode layers several hundred times followed by cofiring process. Electrode material should be tolerable in the firing process maintaining at ceramic-sintering temperatures up to $1100{\sim}1300^{\circ}C$. Ag-Pd can be used as stable electrode material in heat treatment above $960^{\circ}C$. Besides, adding small quantity ceramic powder allow the actuator to be fabricated in a good shape by diminishing shrinkage difference between ceramic and electrode layers, resulting in avoidance of crack and delamination at and/or nearby interface between ceramic an electrode layers. This study presents synthesis of nano-oxide-added Ag/Pd powders and its feasibility to candidate material tolerable at high temperature. The powders were formed in a co-precipitation process of Ag and Pd in nano-oxide-dispersed solution where Ag and Pd precursors are melted in $HNO_3$ acid.

  • PDF

LTCC 기판을 이용한 PZT 압력 센서의 제작 및 특성 연구

  • Heo, Won-Yeong;Hwang, Hyeon-Seok;Lee, Tae-Yong;Lee, Gyeong-Cheon;Song, Jun-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03b
    • /
    • pp.13-13
    • /
    • 2010
  • Piezoelectric sensors are extensively used to measure force because of their high sensitivity and low cost. however, the development of device with reduced size but with improved sensitivity is highly important. Low-temperature co-fired ceramic (LTCC) is one of promising materials for this application than a silicon substrate because it has very good electrical and mechanical properties as well as possibility of making various three dimensional (3D) structures. In this work, piezoelectric pressure sensors based on hybrid LTCC technology were presented. The LTCC diaphragms with thickness of $400\;{\mu}m$ were fabricated by laminating 12 green tapes which consist of alumina and glass particle in an organic binder. The piezoelectric sensing layer consists of PZT thin film deposited by RF magnetron sputtering method on between top and bottom Au electrodes. The PZT films deposited on LTCC diaphragms were successfully grown and were analyzed by using X-ray diffraction method (XRD) and field emission scanning electron microscope (FESEM).

  • PDF

Characteristics of ZnO Thin Film for SMR-typed FBAR Fabrication (FBAR 소자제작을 위한 ZnO 박막 증착 및 특성)

  • Shin, Young-Hwa;Kwon, Sang-Jik;Kim, Hyung-Jun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.2
    • /
    • pp.159-163
    • /
    • 2005
  • This paper gives characterization of ZnO thin film deposited by RF magnetron sputtering method, which is concerned in deposition process and device fabrication process, to fabricate solidly mounted resonator(SMR)-type film bulk acoustic resonator(FBAR). A piezoelectric layer of 1.1${\mu}{\textrm}{m}$ thick ZnO thin films were grown on thermally oxidized SiO$_2$(3000 $\AA$)/Si substrate layers by RF magnetron sputtering at the room temperature. The highly c-axis oriented ZnO thin film was obtained at the conditions of 265 W of RF power, 10 mtorr of working pressure, and 50/50 of Ar/O$_2$ gas ratio. The piezoelectric-active area was 50 ${\mu}{\textrm}{m}$${\times}$50${\mu}{\textrm}{m}$, and the thickness of ZnO film and Al-3 % Cu electrode were 1.4 ${\mu}{\textrm}{m}$ and 180${\mu}{\textrm}{m}$, respectively. Its series and parallel frequencies appeared at 2.128 and 2.151 GHz, respectively, and the qualify factor of the resonator was as high as 401.8$\pm$8.5.

A semi-analytical mesh-free method for 3D free vibration analysis of bi-directional FGP circular structures subjected to temperature variation

  • Shamshirsaz, Mahnaz;Sharafi, Shahin;Rahmatian, Javad;Rahmatian, Sajad;Sepehry, Naserodin
    • Structural Engineering and Mechanics
    • /
    • v.73 no.4
    • /
    • pp.407-426
    • /
    • 2020
  • In this present paper, a semi-analytical mesh-free method is employed for the three-dimensional free vibration analysis of a bi-directional functionally graded piezoelectric circular structure. The dependent variables have been expanded by Fourier series with respect to the circumferential direction and have been discretized through radial and axial directions based on the mesh-free shape function. The current approach has a distinct advantage. The nonlinear Green-Lagrange strain is employed as the relationship between strain and displacement fields to observe thermal impacts in stiffness matrices. Nevertheless, high order terms have been neglected at the final steps of equations driving. The material properties are assumed to vary continuously in both radial and axial directions simultaneously in accordance with a power law distribution. The convergence and validation studies are conducted by comparing our proposed solution with available published results to investigate the accuracy and efficiency of our approach. After the validation study, a parametric study is undertaken to investigate the temperature effects, different types of polarization, mechanical and electric boundary conditions and geometry parameters of structures on the natural frequencies of functionally graded piezoelectric circular structures.

Electrical and Piezoelectric Properties of PbLa(Mn,SbTi)$O_3$ceramics as a function of $MnO_2$$_2$addition ($MnO_2$첨가에 따른 PbLa(Mn,SbTi)$O_3$세라믹스의 유전 및 압전특성)

  • 오동언;민석규;윤광희;류주현;박창엽
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.684-688
    • /
    • 2001
  • The structural, piezoelectric and dynamic range characteristics of modified PbTi $O_3$ceramics were investigated as a function of Mn $O_2$addition. With the increase of Mn $O_2$addition, Curie temperature was decreased. As the increase of Mn $O_2$addition, mechanical quality factor ( $Q_{mt3}$) in the third over tone thickness mode was increased. Dynamic range in the third over tone thickness mode was also increased with the increase of Mn $O_2$addition. The composition ceramics added to 0.075wt% Mn $O_2$showed the best properties for SMD type resonator using third over tone thickness vibration in terms of high Curie temperature more than 31$0^{\circ}C$ and dynamic range of 49.38dB.B.

  • PDF