• Title/Summary/Keyword: high temperature heating,

Search Result 1,675, Processing Time 0.029 seconds

Heating Performance Evaluation of the VRF Heat Pump System with Refrigerant Heating Cycle for the Extreme Cold Region (냉매 가열식 대용량 VRF 히트펌프 사이클 설계를 통한 극한랭지 난방 성능 평가)

  • Lee, Sang-Hun;Choi, Song;Kim, Byeng-Soon;Lee, Jae-Keun;Lee, Kang-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.8
    • /
    • pp.571-579
    • /
    • 2011
  • Heat pump systems for commercial building with variable refrigerant flow(VRF) are expanding a market due to high energy efficiency, lower maintenance cost and easy installation comparing with the conventional heat pump with the constant refrigerant flow. In general, heat pump systems degrade the energy efficiency in the extremely low temperature regions. In this study, VRF heat pump system with refrigerant heating is experimentally investigated to overcome the low heating performance in the extremely low temperature regions. VRF heat pump system with refrigerant heating is found out the sufficient heating performance in the -25 degree temperature condition comparing with the conventional heat pump system and is obtained more than 2,500 kPa high pressure in the evaporator at low temperature.

A Study on Improved Heating Performance of an Apartment Housing Unit (공동주택 세대별 난방 성능 개선 연구)

  • Seo, Jeong-Ah;Shin, Younggy;Kim, Yong-Ki;Lee, Tae-Won
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.2
    • /
    • pp.69-74
    • /
    • 2016
  • Most hot water heating valves for apartments are constant-flow types, which limit the flow rate through an individual household for even distribution of heating water to other households. The constant-flow type is implemented by an on-off control. As a result, heating water is supplied intermittently and hence, indoor air temperature also fluctuates. Returning water temperature is also high, which reduces energy efficiency. To implement continuous feedback control, the indoor temperature dynamics was simulated to fit a measured temperature history by a state-of-the-art physical model. From the model, it was found that the most important disturbance is outdoor temperature and its effect on indoor temperature lasts about an hour. To cope with the slow response and the significant disturbance, a prediction control with proportional feedback is proposed. The control was found to be successful in implementing continuous heating water flow and improved indoor temperature control.

A Study on Application of Radiant Floor Heating in Large Space (대공간의 바닥 복사 난방 적용에 관한 연구)

  • Ahn, Min-Hee;Choi, Chang-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.3
    • /
    • pp.79-85
    • /
    • 2007
  • This paper addresses the indoor air quality when radiant floor heating is applied in large space. Radiant heat exchange between surfaces depends on the orientation and the temperature of the surfaces. Also, the temperature and the radiant characteristic of the wall and the roof that face the floor have great influence on the indoor air environment due to the largeness of the wall and the roof in large spaces. In this study, we simulate a test-cell(25X20X10) using a ies YE And using a CFD(microflo in VE), an indoor air environment was investigated to establish the optimum temperature of floor. At the first time of the heating, high floor temperature is demanded. At the middle of the heating, however, the temperature of the residential space was formed appropriately, although the temperature of the floor was set low.

Aerodynamic Heating Test of Fairing Nose-Cone (페어링 노즈콘에 대한 공력가열 시험)

  • Choi, Sang-Ho;Kim, Seong-Lyong;Kim, In-Sun
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2534-2539
    • /
    • 2007
  • Launch vehicles are exposed to aerodynamic heating conditions while flying at high Mach numbers in the atmosphere. In this study aerodynamic heating test for fairing nose-cone was done using ATSF(Aerodynamic Thermal Simulation Facility) and Engineering Model for fairing. ATSF is a facility that can simulate given temperature profile using about 4,000 halogen heaters on fairing model. Aerodynamic heating profile is got from result of thermal analysis using MINIVER, Thermal Desktop and SINDA/FLUINT. After aerodynamic heat test, it is found that initial temperature of fairing inner surface and thickness of BMS has important effects on temperature of fairing inner surface. Also it is confirmed that maximum temperature of fairing nose-cone inner surface during flight is lower than allowable temperature limit. Later, thermal correlation between thermal analysis and experimental results will be done using aerodynamic heating test result

  • PDF

Multi-point Dieless Forming Technology Using Local Heating Effect (국부가열효과를 활용한 다점성형공정기술)

  • Park, J.W.
    • Transactions of Materials Processing
    • /
    • v.31 no.2
    • /
    • pp.96-102
    • /
    • 2022
  • The multi-point dieless forming technology is one of flexible forming technologies that can form 3D curved surfaces of various shapes utilizing a lot of punch arrangements. A new technology that can simultaneously apply high-temperature forming and flexible forming technology by fusing local heating effect to such multi-point dieless forming technology was proposed in the present study. A simple local heating multi-point dieless forming apparatus was fabricated to confirm the applicability of this new technology. This equipment was designed to be used as a heat source by inserting heating cartridges in the head of the multi-point punch. Cartridges were used for all individual punches. Using the manufactured equipment, the time to raise the temperature to the target temperature and the surface temperature of the punch head part in contact with the plate were measured. In addition, forming experiments were carried out according to sheet material temperature (100 ℃, 200 ℃, and 300 ℃) to obtain forming results for each condition. The applicability and feasibility of this technology were confirmed through experimental results.

Self-activated Graphene Gas Sensors: A Mini Review

  • Kim, Taehoon;Eom, Tae Hoon;Jang, Ho Won
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.220-226
    • /
    • 2020
  • Graphene has been widely considered a promising candidate for high-quality chemical sensors, owing to its outstanding characteristics, such as sensitive gas adsorption at room temperature, high conductivity, high flexibility, and high transparency. However, the main drawback of a graphene-based gas sensor is the necessity for external heaters due to its slow response, incomplete recovery, and low selectivity at room temperature. Conventional heating devices have limitations such as large volume, thermal safety issues, and high power consumption. Moreover, metal-based heating systems cannot be applied to transparent and flexible devices. Thus, to solve this problem, a method of supplying the thermal energy necessary for gas sensing via the self-heating of graphene by utilizing its high carrier mobility has been studied. Herein, we provide a brief review of recent studies on self-activated graphene-based gas sensors. This review also describes various strategies for the self-activation of graphene sensors and the enhancement of their sensing properties.

Processing of NiTi Shape Memory Alloy by Self- propagating High-temperature Synthesis (자전 고온 반응 합성법을 이용한 NiTi계 형상기억 합금의 제조에 관한 연구)

  • 윤종필
    • Journal of Powder Materials
    • /
    • v.2 no.2
    • /
    • pp.158-164
    • /
    • 1995
  • Synthesis of the NiTi shape memory alloy using the thermal explosion mode of the self-propagating high-temperature synthesis has been investigated. The significant fractions of intermetallics phases were found to form at the Ti/Ni powder interface during the heating to the ignition temperature and seemed to influence the relative fraction of phases in the final products. As the heating rate to the ignition temperature was increased, the combustion temperature and the fraction of NiTi in the final reaction products were increased. The synthesis reaction under 70 MPa compressive pressure yielded a reaction product with 98% theoretical density.

  • PDF

Distortion and transformation of high tensile strength steel plate of 50kg/mm$^{2}$grade due to line heating (50kg/mm$^{2}$급 고장력 강판의 선상가열에 따른 판상변형과 재질변화)

  • 정남호;최병길;박종은
    • Journal of Welding and Joining
    • /
    • v.3 no.1
    • /
    • pp.11-21
    • /
    • 1985
  • The line heating is a thermoplastic working technique which is used in bending work of steel plate and in correcting the distortion of welded structure. This method is considerably effective when the water-cooling is followed. In this study, an investigation was accomplished to find the effects on the change of material properties when the line heating was applied on the high tensile steel plate of 50kg/mm^2$ grade. Some steel plates were heated to various temperatures and then cooled with water or in the air. In this study, the author measured the angular distortion continuously during line heating to find out the relation between the bending efficiency and heating or water-cooling temperature. Furthermore, its material properties were examined by the V-notch Charpy impact test, the microscope observation and the Vickers hardness test. As results, the followings were clarified. (1) The amount of angular distortion increases as the heating temperature or the water-cooling temperature rises. (2) When the steel plate is heated between 700.deg. C and 900.deg. C, and then is water-cooled over 700.deg. C, some brittle structure is observed. But if the temperature of water-cooling is below 700.deg. C, no brittle one is found. (3) When the steel plate is heated over 800.deg. C and is cooled in the air, there is no unfavrable effect.

  • PDF

Development of high-efficiency heating system using humidifying particles (가습 입자를 활용한 고효율 난방 시스템 개발)

  • Lee, Jeong-Won;Hong, Kyung-Bo
    • Design & Manufacturing
    • /
    • v.14 no.4
    • /
    • pp.17-24
    • /
    • 2020
  • Products for heating indoors in low temperature and dry winter are largely divided into products using fossil fuels and products using electricity. The fossil fuels can warm the entire space by convection, but there is a high risk of fire and the frequent ventilation due to the increase in carbon monoxide and carbon dioxide. Heaters using electricity are mainly used because they are convenient to use and are cheap. However, these products can not efficiently warm the air because they use radiation energy. In other words, only the front part exposed to the heater is warm, and the rear part has no heating effect at all. Also, because it emits a large amount of light, fatigue of the eyes is very high. Another problem is that when using electric heaters, the room tends to be dry by high heat. Indoor humidity maintenance is a very important factor in the prevention and treatment of respiratory diseases. Especially, it is essential for health care for infants, bronchial organs and people with weak respiratory because humidity is low in winter. In this study, we conducted a study to develop a product that can improve heating efficiency while maintaining proper indoor humidity by combining heat energy and moisture particles. The concept of humidification and heating at the same time, moisture particles generated in the humidifier pass through the heater, include thermal energy, and the moisture particles with thermal energy are diffused into the space by forced convection, thereby warming the entire space. In addition, the heating time is shortened as the feeling temperature is increased with the high relative humidity, and this has the effect that the heating cost in winter is reduced.

Electrical Property Evaluation of Printed Copper Nano-Ink Annealed with Infrared-Lamp Rapid Thermal Process (적외선 램프를 이용하여 소결한 구리 나노잉크의 전기적 특성 평가에 관한 연구)

  • Han, Hyun-Suk;Kim, Changkyu;Yang, Seung-Jin;Kim, Yoon-Hyun
    • Korean Journal of Materials Research
    • /
    • v.26 no.4
    • /
    • pp.216-221
    • /
    • 2016
  • A sintering process for copper based films using a rapid thermal process with infrared lamps is proposed to improve the electrical properties. Compared with films produced by conventional thermal sintering, the microstructure of the copper based films contained fewer internal and interfacial pores and larger grains after the rapid thermal process. This high-density microstructure is due to the high heating rate, which causes the abrupt decomposition of the organic shell at higher temperatures than is the case for the low heating rate; the high heating rate also induces densification of the copper based films. In order to confirm the effect of the rapid thermal process on copper nanoink, copper based films were prepared under varying of conditions such as the sintering temperature, time, and heating rate. As a result, the resistivity of the copper based films showed no significant changes at high temperature ($300^{\circ}C$) according to the sintering conditions. On the other hand, at low temperatures, the resistivity of the copper based films depended on the heating rate of the rapid thermal process.