• Title/Summary/Keyword: high temperature heating,

Search Result 1,684, Processing Time 0.029 seconds

A Study on Electrical $MoSi_2$ High Temperature Heating Elements by Additives (첨가제 변화에 따른 $MoSi_2$ 고온발열체의 전기적 특성)

  • Lee, H.I.;Han, S.O.;Koo, K.W.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1405-1407
    • /
    • 2001
  • It was studied to prepare high temperature heating elements using molybdenum disilicide($MoSi_2$). Molybdenum disilicide is widely used as material for manufacturing high temperature heating elements. $MoSi_2$ heating elements could be used at 1700-1900$^{\circ}C$. However, it is relatively expensive, and its demand depends on import. $MoSi_2$ powders was mixed with 4-5wt% of montmorillonites type bentonite as plasticizer and a small amount of $Si_3N_4$, $ThO_2$, and B as additives to prepare specimen of heating elements. Then, it was extruded, dried, sintered and machined followed by heating test. Effects of sintering conditions and amount of additives were investigated, It was sintered effectively at 1,350$^{\circ}C$ for five hours. Electrical resistivity was decreased with increasing of sintering temperature and time, and related with apparent density of the specimens. It was linealy decreased with increasing of sintered density. The heating elements thus prepared was stable at 1700$^{\circ}C$ and the physical properties such as specific electrical resistivity, hardness, apparent density, thermal expansion coefficient, and bending strength were almost identical with those of commercial heating elements.

  • PDF

Effect of Foehn Wind on Record-Breaking High Temperature Event (41.0℃) at Hongcheon on 1 August 2018 (2018년 8월 1일 홍천에서의 기록적인 고온 사례(41.0℃)에 영향을 준 푄 바람)

  • Kim, Seok-Hwan;Lee, Jae Gyoo;Kim, Yu-Jin
    • Atmosphere
    • /
    • v.31 no.2
    • /
    • pp.199-214
    • /
    • 2021
  • A record-breaking high surface air temperature of 41.0℃ was observed on 1 August 2018 at Hongcheon, South Korea. In this study, to quantitatively determine the formation mechanism of this extremely high surface air temperature, particularly considering the contributions of the foehn and the foehnlike wind, observational data from Korea Meteorological Administration (KMA) and the Weather Research and Forecasting (WRF) model were utilized. In the backward trajectory analysis, trajectories of 100 air parcels were released from the surface over Hongcheon at 1600 LST on 1 August 2018. Among them, the 47 trajectories (38 trajectories) are tracked back above (below) heights of 1.4 km above mean sea level at 0900 LST 31 July 2018 and are defined as upper (lower) routes. Lagrangian energy budget analysis shows that for the upper routes, adiabatic heating (11.886 × 103 J kg-1) accounts for about 77% of the increase in the thermal energy transfer to the air parcels, while the rest (23%) is diabatic heating (3.650 × 103 J kg-1). On the other hand, for the lower routes, adiabatic heating (6.111 × 103 J kg-1) accounts for about 49% of the increase, the rest (51%) being diabatic heating (6.295 × 103 J kg-1). Even though the contribution of the diabatic heating to the increase in the air temperature rather varies according to the routes, the contribution of the diabatic heating should be considered. The diabatic heating is caused by direct heating associated with surface sensible heat flux and heating associated with the turbulent mixing. This mechanism is the Type 4 foehn described in Takane and Kusaka (2011). It is concluded that Type 4 foehn wind occurs and plays an important role in the extreme event on 1 August 2018.

Effects on Tensile Strength of Base and Weld Metal of Ti-6Al-4V Alloy in Short Time Exposure to High Temperature (Ti-6Al-4V 합금의 단시간 고온 노출 시 모재 및 용접부의 인장강도 특성)

  • Chae, Byoung-Chan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.413-421
    • /
    • 2014
  • Since the structural temperature of a flight vehicle flying at high speed rises rapidly due to aerodynamic heating, it is necessary for optimum structural design to obtain proper material properties at high temperature by taking into account of its operational environment. For a special alloy, analysis data on strength change due to exposure time to high temperature are very limited, and most of them are for an exposure time longer than 30 minutes for long term operations. In this study, base and weld metal samples of Ti-6Al-4V alloy had been prepared and high temperature tensile tests with induction heating were performed, and then high temperature strength characteristics and strength recovery characteristics through cooling have been analyzed. Pre-tests to determine maximum heating rate were performed, and response characteristics for temperature control were confirmed. As a result, high temperature tensile strength appeared to be lower than that of room temperature, but it was higher than that of high temperature of 30 minite exposure listed in MMPDS. In strength recovery through cooling Ti-6Al-4V alloy has shown higher recovery rate compared with other alloys.

Comparative Study on the Electromagnetic-Heat Transfer Co-simulation Analysis and High Frequency Induction Heating of Ti-6Al-4V Alloy (전자기-열전달 연동 해석과 Ti-6Al-4V 합금 고주파 유도가열 실험에 대한 비교 분석에 관한 연구)

  • Bae, Jinki;Choi, Jinkyu;Cho, Mingoo;Lee, Seoksoon
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.5
    • /
    • pp.1-7
    • /
    • 2021
  • Demand for Ti-6Al-4V alloy is increasing in various industries because of its superior strength to weight and high-temperature strength properties. However, due to its low formability at room temperature, it is formed at high temperature, where its productivity and efficiency are low. The current high-temperature forming method has many limitations because it involves heating the specimen by heating the lower mold. It is expected that a process using high frequency induction heating, which can locally heat the product, can improve its productivity. In addition, time and cost can be saved if the process is simulated in advance with a reliable analysis. In this paper, we verified the reliability of the analysis by comparing the result of heating the specimen to 850 ℃ by high frequency induction heating and the temperature obtained through the co-simulation analysis.

Development of a PLD heater for continuous deposition and growth of superconducting layer

  • Jeongtae Kim;Insung Park;Gwantae Kim;Taekyu Kim;Hongsoo Ha
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.2
    • /
    • pp.14-18
    • /
    • 2023
  • Superconducting layers deposited on the metal substrate using the pulsed laser deposition process (PLD) play a crucial role in exploring new applications of superconducting wires and enhancing the performance of superconducting devices. In order to improve the superconducting property and increase the throughput of superconducting wire fabricated by pulsed laser deposition, high temperature heating device is needed that provides high temperature stability and strong durability in high oxygen partial pressure environments while minimizing performance degradation caused by surface contamination. In this study, new heating device have been developed for PLD process that deposit and growth the superconducting material continuously on substrate using reel-to-reel transportation apparatus. New heating device is designed and fabricated using iron-chromium-aluminum wire and alumina tube as a heating element and sheath materials, respectively. Heating temperature of the heater was reached over 850 ℃ under 700 mTorr of oxygen partial pressure and is kept for 5 hours. The experimental results confirm the effectiveness of the developed heating device system in maintaining a stable and consistent temperature in PLD. These research findings make significant contributions to the exploration of new applications for superconducting materials and the enhancement of superconducting device performance.

An investigation into Weldline Strength According to Induction Heating Conditions (유도가열 조건에 따른 사출성형품 웰드부의 강도 고찰)

  • Son, Dong-Hwi;Seo, Young-Soo;Park, Keun
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.441-444
    • /
    • 2009
  • Weldlines are generated during the injection molding process when two or more melt flows are brought into contact. At the welded contact region, a 'V'-shaped notch is formed on the surface of the molded part. This 'V'-notch deteriorates not only surface appearance but also mechanical strength of the molded part. To eliminate or reduce weldlines so as to improve the weldline strength, the mold temperature at the corresponding weld locations should be maintained higher than the glass transition temperature of the resin material. The present study implements high-frequency induction heating in order to rapidly raise mold surface temperature without a significant increase in cycle time. This induction heating enables to local mold heating so as to eliminate or reduce weldlines in an injection-molded plastic part. The effect of induction heating conditions on the weldline strength and surface appearance of an injection-molded part is investigated.

  • PDF

Spalling of heated high performance concrete due to thermal and hygric gradients

  • Zhang, Binsheng;Cullen, Martin;Kilpatrick, Tony
    • Advances in concrete construction
    • /
    • v.4 no.1
    • /
    • pp.1-14
    • /
    • 2016
  • In this study, high performance concrete beams and prisms with high content of PFA were heated to various temperatures up to $450^{\circ}C$ at heating rates of $1^{\circ}C/min$, $3^{\circ}C/min$ and $10^{\circ}C/min$. The thermal gradient was found to increase first with the heating time until a peak value was reached and then decrease until the thermal equilibrium was reached, measured as $115^{\circ}C$, $240^{\circ}C$ and $268^{\circ}C$ for the three heating rates. Spalling occurred on some specimens when the heating temperature was over $400^{\circ}C$ for heating rates of $3^{\circ}C/min$ and $10^{\circ}C/min$. The hygric gradient was found to reach its maximum when the thermal gradient reached its peak. This study indicates that spalling of HPC could happen when the heating temperature was high enough, and both thermal and hygric gradients reached their maxima.

The Decrease of Return Temperature by Improvement of the Consumer's Control System in District Heating (지역난방 열사용시설 자동제어시스템 개선을 통한 회수온도 저감 연구)

  • Ha, Seung-Kyu;Kim, Youn-Hong;Lee, Hoon
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.245-251
    • /
    • 2006
  • The main idea of this study is to turn attention on the question of good cooling ability of customer substations in large district heating networks. The main reason for that is based on our experience that the optimization of district heating very often is directed toward production, whereas questions of optimal distribution are neglected if only the necessary load can be supplied and the customer's request for comfort is met. Our view is that low return temperature(operational temperature differences, ${\Delta}T$) in district heating systems is an Important feature for efficient net operation and gives both economic and operational benefits to the district heating supplier Furthermore, it is as well a prerequisite for meeting the customers demand for reliable supply of the heat load. However, in many practical cases we have seen that district heating return temperatures are higher than necessary. Hence, the aim of the study is to propose and verify a method for detection of the most critical consumers of the net and to identify the reasons for resulting high return temperature. From the results, temperature control system is presented as one of the most important reason of high return temperature in DH networks.

  • PDF

Study on Analysis of Buoyancy Effect in Air-heating Collector using Solar Heat (태양열을 이용한 공기가열 집열기의 부력효과 해석 연구)

  • Yang, Young-Joon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.4_2
    • /
    • pp.467-474
    • /
    • 2021
  • The renewable energy is known as eco-friendly energy to reduce the use of fossil fuel and decrease the environmental pollution due to exhaust gas. Targets of solar collector in domestic are usually acquisitions of hot water and hot air. System of air-heating collector is one of the technologies for obtaining hot air in cases of especially heating room and drying agricultural product. The purpose of this study is to investigate the characteristics of thermal flow such as relative pressure, velocity, outlet temperature and buoyancy effect in air-heating collector using solar heat. The flow field of air-heating collector was simulated using ANSYS-CFX program and the behaviour of hot air was evaluated with SST turbulence model. As the results, The streamline in air-heating collector showed several circular shapes in case of condition of buoyancy. Temperature difference in cross section of outlet of air-heating collector did not almost show in cases of buoyancy and small inlet velocity. Furthermore merit of air-heating collector was not observed in cases of inlet velocities. Even though it was useful to select condition of buoyancy for obtaining high temperature, however, it was confirmed that the trade off between high temperature of room and rapid injection of hot air to room could be needed through this numerical analysis.

Numerical Prediction of the Base Heating due to Rocket Engine Clustering (로켓엔진 병렬화에 의한 저부가열의 수치적 예측)

  • Kim Seong Lyong;Kim Insun
    • Journal of computational fluids engineering
    • /
    • v.9 no.3
    • /
    • pp.18-25
    • /
    • 2004
  • Multi plume effects on the base heating have been Investigated with a CFD program. As the flight altitude increases, the plume expansion angle increases regardless of the single or clustered engine. The plume interaction of the clustered engine makes a high temperature thermal shear in the center of four plumes. At low altitude, the high temperature shear flow stays in the center of plumes, but it increases up to engine base with the increasing altitude. At high altitude, the flow from plume to base and the flow from base into outer free stream are supersonic, which transfers the high heat in the center of plumes to the base region. The radiative heat of the clustered engine varies from 220 kW/m² to 469 kW/m² with increasing altitude while those of the single engine are 10 kW/m² and 43.7 kW/m². And the base temperature of the clustered engine varies from 985K to 1223K, and those of the single engine are 483K and 726K. This big radiative heat of clustered engine can be explained by the active high temperature base flow and strong plume interactions.