• Title/Summary/Keyword: high strengthened concrete

Search Result 140, Processing Time 0.034 seconds

The Considerations on Flexural Performance of RC Beam Strengthened with Basalt Fibers (Basalt 섬유로 보강된 철근콘크리트 보의 휨 성능 고찰)

  • 심종성;문도영;박성재;박경동
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.599-604
    • /
    • 2002
  • Fibers have been used to improve tile flexural performance of reinforced concrete. Therefore many different kinds of fibers have been developed and tested to reinforcing concrete. Basalt fiber is one of the recently developed materials for this purpose. Basalt fiber produced from this basalt raw material has high initial strength and durability. But, the main advantages of the basalt fiber are resistance to high operating temperatures and lower modulus and chemical resistance compared to fiberglass. Also basalt fiber may be consumed as a potential replacement for expensive carbon fibers.

  • PDF

Evaluation of structural behavior of RC columns strengthened with high-strength steel bars (고강도 횡보강철근을 사용한 철근 콘크리트 기둥의 구조 거동 평가)

  • Lee, Jang-Hee;Kim, Do-Jin;Baek, Seung-Cheol;Kim, Sang-Woo;Kim, Kil-Hee;Lee, Jung-Yoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.103-104
    • /
    • 2010
  • There are two conflicting opinions about effect of confinement using High-Strength transverse reinforcement. This paper verifies evaluation of structural behavior of RC columns strengthened with high-strength steel bars by performing an experimental study of 15 large-scale column confined by high-strength transverse reinforcement tests.

  • PDF

Damage-based stress-strain model of RC cylinders wrapped with CFRP composites

  • Mesbah, Habib-Abdelhak;Benzaid, Riad
    • Advances in concrete construction
    • /
    • v.5 no.5
    • /
    • pp.539-561
    • /
    • 2017
  • In this study, the effects of initial damage of concrete columns on the post-repair performance of reinforced concrete (RC) columns strengthened with carbon-fiber-reinforced polymer (CFRP) composite are investigated experimentally. Four kinds of compression-damaged RC cylinders were reinforced using external CFRP composite wraps, and the stress-strain behavior of the composite/concrete system was investigated. These concrete cylinders were compressed to four pre-damaged states including low -level, medium -level, high -level and total damage states. The percentages of the stress levels of pre-damage were, respectively, 40, 60, 80, and 100% of that of the control RC cylinder. These damaged concrete cylinders simulate bridge piers or building columns subjected to different magnitudes of stress, or at various stages in long-term behavior. Experimental data, as well as a stress-strain model proposed for the behavior of damaged and undamaged concrete strengthened by external CFRP composite sheets are presented. The experimental data shows that external confinement of concrete by CFRP composite wrap significantly improves both compressive strength and ductility of concrete, though the improvement is inversely proportional to the initial degree of damage to the concrete. The failure modes of the composite/damaged concrete systems were examined to evaluate the benefit of this reinforcing methodology. Results predicted by the model showed very good agreement with those of the current experimental program.

Effect of Bond Length and Web Anchorage on Flexural Strength in RC Beams Strengthened with CFRP Plate (부착길이와 복부정착이 CFRP판으로 보강된 RC 보의 휨 보강효과에 미치는 영향)

  • 박상렬
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.645-652
    • /
    • 2002
  • This paper presents the flexural behavior and strengthening effect of reinforced concrete beams bonded with carbon FRP plate. Parameters involved in this experimental study were plate bond length and sheet web anchorage length. Test beams were strengthened with FRP plate on the soffit and anchored with FRP sheet on the web. In general, strengthened beams with no web anchorage were failed by concrete cover failure along the longitudinal reinforcement. On the other hand, strengthened beams with web anchorage were finally failed by delamination shear failure within concrete after breaking of CFRP sheet wrapping around web. The ultimate load and deflection of strengthened beams increased with an increased bond length of FRP plate. Also, the ultimate load and deflection increased with an increased anchorage length of FRP sheet. Particularly, the strengthened beams with web anchorage maintained high ultimate load resisting capacity until very large deflection. The shape of strain distribution of CFRP plate along beam was very similar to that of bending moment diagram. Therefore, an assumption of constant shear stress in shear span could be possible in the analysis of delamination shear stress of concrete. In the case of full bond length, the ultimate resisting shear stress provided by concrete and FRP sheet Increased with an increase of web anchorage length. In the resisting shear force, a portion of the shear force was provided by FRP anchorage sheet.

Fatigue Assessment Model of Corroded RC Beams Strengthened with Prestressed CFRP Sheets

  • Song, Li;Hou, Jian
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.2
    • /
    • pp.247-259
    • /
    • 2017
  • This paper presents a fatigue assessment model that was developed for corroded reinforced concrete (RC) beams strengthened using prestressed carbon fiber-reinforced polymer (CFRP) sheets. The proposed model considers the fatigue properties of the constituent materials as well as the section equilibrium. The model provides a rational approach that can be used to explicitly assess the failure mode, fatigue life, fatigue strength, stiffness, and post-fatigue ultimate capacity of corroded beams strengthened with prestressed CFRP. A parametric analysis demonstrated that the controlling factor for the fatigue behavior of the beams is the fatigue behavior of the corroded steel bars. Strengthening with one layer of non-prestressed CFRP sheets restored the fatigue behavior of beams with rebar at a low corrosion degree to the level of the uncorroded beams, while strengthening with 20- and 30%-prestressed CFRP sheets restored the fatigue behavior of the beams with medium and high corrosion degrees, respectively, to the values of the uncorroded beams. Under cyclic fatigue loading, the factors for the strengthening design of corroded RC beams fall in the order of stiffness, fatigue life, fatigue strength, and ultimate capacity.

Study on Strengthening Effect and Failure Behavior of CFS Strengthened High Strength RC Columns after Cross -sectional Shape Modification (4각기둥의 단면형상 변형 후 CFS로 보강한 고강도 철근 콘크리트 기둥의 보강효과 및 파괴거동 연구)

  • Jun Kyung-Suk;Kim Jang-Ho;Park Seok-Kyun;Kim Jin-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.259-262
    • /
    • 2005
  • Numerous studies showed that safety and serviceability of many concrete infrastructures and buildings built in 1970's have capacity less than their design capacities and thereby require immediate retrofitting. Currently, these aged concrete structure are being repaired using many repair and strengthening methods developed in the past. Therefore, in this study, a repairing and strengthening method for retrofitting high strength concrete columns that can effectively improve the performance of high strength concrete columns is developed. The square high strength concrete column's cross-sectional shape is modified to octagonal shape by attaching precast members on the surface of the column. Then, the octagonal column surface is wrapped using Carbon Fiber Sheets (CFS). The method allowed the maximum usage of confinement effect of externally wrapped CFS, which resulted in improved strength and ductility of repaired high strength concrete columns.

  • PDF

Analytical Study on Concrete Strengthened with FRP Sheet under Low-velocity Impact Loading (FRP Sheet로 보강된 콘크리트의 저속 충격 저항 성능에 대한 해석적 평가)

  • Kim, Yun-Ji;Yoo, Doo-Yeol;Lee, Seul-Kee;Kim, Mi-Hye;Yoon, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.159-160
    • /
    • 2010
  • Due to the characteristics of high toughness, FRP is a valuable material to apply to the structures that have to withstand the blast or impact loads. FEM analyses for the concrete beams flexurally strengthened in tension part with FRP sheets were performed to improve the low-velocity impact resistance.

  • PDF

An Experimental Study on the Flexural Behavior of RC Beams Strengthened with Hi-Strength Bars (고장력 인장봉으로 보강된 RC보의 휨거동에 관한 실험적 연구)

  • Kim, Yoon-Jung;Shin, Kyung-Jae;Moon, Jeong-Ho;Oh, Young-Suk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.193-196
    • /
    • 2006
  • Unlike external bonded plate or carbon fiber, the external unbonded strengthening has some advantages in speed and simplicity of installation. It is not required surface preparations and not affected by environmental conditions. A set of six laboratory tests on RC beams strengthened using the technique are reported, results compared with non-strengthened specimens. The main test parameters are the cross-sectional area of the high-tension bar and the distance of stirrups. Test result show that the beams reinforced are superior to reference specimens, especially for the strength and deformation capacity. Also, it is shown that good efficiencies can be achived in shear strength of the beam.

  • PDF

An Experimental Study on the Effect of the Early Age Curing Condition on Mass Concrete (초기재령하의 양생조건이 매스콘크리트 온도관리에 미치는 영향 연구)

  • Kim, Kwang-Don;Kim, Chun-Ho;Lee, Choong-Yong;Hwang, Min-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.685-688
    • /
    • 2006
  • As the concrete structure being large-sized and/or high-strengthened, the control of the hydration and curing temperature is made much account. This study, analysing the concrete temperature history from cylindric specimen and mock-up structures, investigates the effect of the early age curing condition and the optimum method of curing temperature control on mass concrete.

  • PDF

Analysis of Behaviors of Concrete Strengthened with FRP Sheets and Steel Fibers Under Low-Velocity Impact Loading (저속 충격하중에서의 FRP Sheet 및 강섬유 보강 콘크리트의 거동 해석)

  • Lee, Jin Young;Kim, Mi Hye;Min, Kyung Hwan;Yoon, Young Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.4
    • /
    • pp.155-164
    • /
    • 2011
  • In the case of impact loading test, measurement of the test data has difficulties due to fast loading velocity. In addition, the dynamic behaviors of specimens are distorted by ignoring local fracture. In this study, therefore, finite element analysis which considers local fracture and strain rate effect on impact load was performed by using LS-DYNA, an explicit analysis program. The one-way and two-way specimens strengthened with FRP Sheets and steel fibers were considered as analysis models. The results showed that the impact resistance of steel fiber reinforced concrete (SFRC) and ultra high performance concrete (UHPC) was enhanced. In the case of specimens strengthened with FRP Sheets, GFRP was superior to CFRP in the performance of impact resistance, and there was little effect of the FRP Sheet orientation. The reliability of this analysis model was verified by comparing with previous experimental results.