• Title/Summary/Keyword: high strength steels

Search Result 551, Processing Time 0.031 seconds

Prediction of Tensile Strength of High-Nitrogen 18Mn-18Cr Austenitic Steels for Generator Retaining Ring (발전기용 오스테나이트계 18Mn-18Cr 고질소강의 제조와 인장강도 예측)

  • Hwang, Byoungchul;Lee, Tae-Ho
    • Korean Journal of Materials Research
    • /
    • v.23 no.9
    • /
    • pp.483-488
    • /
    • 2013
  • Over the past few decades, high-nitrogen austenitic steels have steadily received greater attention since they provide a unique combination of high strength and ductility, good corrosion resistance, and non-magnetic properties. Recently, highnitrogen 18Mn-18Cr austenitic steels with enhanced strength have been developed and widely used for generator retaining rings in order to prevent the copper wiring from being displaced by the centrifugal forces occurring during high-speed rotation. The high-nitrogen austenitic steels for generator retaining ring should be expanded at room temperature and then stress relief annealed at around $400^{\circ}C$ to achieve the required mechanical properties. In this study, four kinds of high-nitrogen 18Mn-18Cr austenitic steels with different nitrogen content were fabricated by using a pressurized vacuum induction melting furnace, and then the effects of nitrogen content, cold working, and stress relieving on tensile properties were investigated. The yield and tensile strengths increased proportionally with increasing nitrogen content and cold working, and they further increased after stress relieving treatment. Based on these results, a semi-empirical equation was proposed to predict the tensile strength of highnitrogen 18Mn-18Cr austenitic steels for generator retaining rings. It will be a useful for the effective fabrication of high-nitrogen 18Mn-18Cr austenitic steels for generator retaining rings with the required tensile properties.

Effects of B and Cu Additions on the Microstructure and Mechanical Properties of High-Strength Bainitic Steels (베이나이트계 고강도강의 미세조직과 기계적 특성에 미치는 B 및 Cu 첨가의 영향)

  • Yim, H.S.;Lee, S.Y.;Hwang, B.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.28 no.2
    • /
    • pp.75-81
    • /
    • 2015
  • Effects of B and Cu additions on the microstructure and mechanical properties of high-strength bainitic steels were investigated in this study. Six kinds of high-strength bainitic steels with different B and Cu contents were fabricated by thermo-mechanical control process composed of controlled rolling and accelerated cooling. The microstructures of the steels were analyzed using optical and transmission microscopy, and the tensile and impact tests were conducted on them in order to investigate the correlation of microstructure with mechanical properties. Depending on the addition of B and Cu, various low-temperature transformation products such as GB (granular bainite), DUB (degenerated upper bainite), LB (lower bainite), and LM (lath martensite) were formed in the steels. The addition of B and Cu increased the yield and tensile strengths because of improved hardenability and solid solution strengthening, but decreased the ductility and low-temperature toughness. The steels containing both B and Cu had a very high strength above 1.0 GPa, but showed a worse low-temperature toughness of higher DBTT (ductile-to-brittle transition temperature) and lower absorbed energy. On the other hand, the steels having GB and DUB showed a good combination of tensile and impact properties in terms of strength, ductility, yield ratio, absorbed energy, and DBTT.

Structural Performance of 800 MPa High-Strength Steel Members and Application to Highrise and Mega Building Structures

  • Lee, Cheol-Ho
    • International Journal of High-Rise Buildings
    • /
    • v.6 no.3
    • /
    • pp.249-259
    • /
    • 2017
  • The use of high-strength steels in construction of highrise and mega building structures can bring about many technological advantages from fabrication to erection. However, key design criteria such as local and lateral stability in current steel design specifications were developed based on tests of ordinary steels which have stress-strain characteristics very different from that of high strength steels. A series of tests on 800 MPa tensile strength steel (HSA800) members are summarized in this paper which were conducted to investigate the appropriateness of extrapolating current ordinary-steel based design criteria to high strength steels. 800 MPa I-shape beam specimens designed according to flange local buckling (FLB) criteria of the AISC Specification developed a sufficient strength for elastic design and a marginal rotation capacity for plastic design. It is shown that, without introducing distinct and significant yield plateau to the stress-strain property of high-strength steel, it is inherently difficult to achieve a high rotation capacity even if all the current stability limits are met. 800 MPa I-shape beam specimens with both low and high warping rigidity exhibited sufficient lateral torsional buckling (LTB) strength. HSA800 short-column specimens with various edge restraint exhibited sufficient local buckling strength under uniform compression and generally outperformed ordinary steel specimens. The experimental P-M strength was much higher than the AISC nominal P-M strength. The measured residual stresses indicated that the impact of residual stress on inelastic buckling of high-strength steel is less. Cyclic seismic test results showed that HSA800 members have the potential to be used as non-ductile members or members with limited ductility demand in seismic load resisting systems. Finally, recent applications of 800 MPa high strength steel to highrise and mega building structures in Korea are briefly presented.

Development of Structural Steel and Trend of Welding Technology (건설용 강재개발 및 용접기술동향)

  • Kim, Sung Jin;Jeong, Hong Chul
    • Journal of Welding and Joining
    • /
    • v.34 no.1
    • /
    • pp.7-20
    • /
    • 2016
  • A brief overview is given of the development of various structural steels and their welding application technology. Firstly, the general characteristics and welding performance of structural steels used in architecture and bridge are introduced. For safety against earthquakes or strong wind, and for highly efficient welding in high-rise building constructions, ultra high strength steel with tensile strength over 800 MPa or high HAZ toughness steel plates under high heat input welding have been developed. In particular, efficient welding technology ensuring high resistance to cold and hot cracking of ultra high strength steel is reviewed in the present paper. Secondly, various coated steels used mainly for outer part in construction are briefly discussed. Moreover, a major drawback of coated steel during welding operation, and several solutions to overcome such technical problem are proposed. It is hoped that this review paper can lead to significant academic contributions and provide readers interested in the structural steels with useful welding technology.

Fabrication and Mechanical Properties of Powder Metallurgical High Speed Steels with Various Co Contents (Co 함량이 다른 분말고속도공구강의 제조 및 기계적 특성)

  • 홍성현;배종수;김용진
    • Journal of Powder Materials
    • /
    • v.9 no.5
    • /
    • pp.303-306
    • /
    • 2002
  • P/M high speed steels with various Co contents were fabricated by gas atomization and Canning/HIP process. As Co content in P/M high speed steel increased, hardness, transverse rupture strength and yield strength in compressive testing increased due to solid solution hardening of Co in matrix. Especially, PM high speed steels with Co have high deformation resistance to repeated compressive loading.

Manufacturing Technologies and Applications of Steel Strip Products (철강 압연제품의 제조기술 및 응용)

  • 권오준
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.10-21
    • /
    • 1999
  • Recent progress in manufacture of hot and cold rolled steel strip products and their applications were reviewed. The main trend in the technological development has been to meet the customers' requests for quality improvement and cost reduction. The weight reduction to reduce the fuel consumption is the main issue in the automotive industry and, therefore, various steels have been developed to improve formability as well as strength. The steels include super-EDDQ steels, bainitic steels, TRIP steels, etc. In the oil industry, efforts have been focused to improve strength together with either low temperature toughness or HIC/SSCC resistance. The packaging industry is also a highly competitive market, and steel and canmaking companies have worked cooperatively to develop cost-effective canmaking processes as well as high performance steels. This type of cooperation has also been found important in other industries such as the appliance and electronic industries for the benefits of both steelmakers and customers.

  • PDF

A Study on Tool Wear in Drilling of Hot-rolled High Strength Steel (고장력 열연강판의 드릴 가공시 공구마멸에 관한 연구)

  • 신형곤;김성일;김태영
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.2
    • /
    • pp.10-17
    • /
    • 2001
  • Drilling is one of the most important operations performed in the machining industry. And the material of the workpiece has a profound effect on the tool life, the surface finish produced and the overall economy of the process. Hot-rolled high strength steels have been used for automobile structural material, owing to high hardness and machinability of the material. However, in the drilling of hot-rolled high strength steels, the current knowledge of tool wear and machinability are insuf-ficient. There, it is desirable to monitor drill wear status and hole quality changes during the hole drilling process. Accordingly, this paper deals with the cutting characteristics of the hot-rolled high strength steels using common HSS drill. The performance variables include the drilling thrust, torque and drill wear data obtained from drilling experiments con-ducted on the workpiece. Also drill were is measured by acoustic emission system and computer vision system.

  • PDF

Effects of Strain Rate and Temperature on Tensile Properties of High Mn Twinning Induced Plasticity Steels (고망간 Twinning Induced Plasticity 강의 인장 특성에 미치는 변형률 속도와 온도의 영향)

  • Lee, Junghoon;Lee, Sunghak;Shin, Sang Yong
    • Korean Journal of Materials Research
    • /
    • v.27 no.12
    • /
    • pp.643-651
    • /
    • 2017
  • Four types of high Mn TWIP(Twinning Induced Plasticity) steels were fabricated by varying the Mn and Al content, and the tensile properties were measured at various strain rates and temperatures. An examination of the tensile properties at room temperature revealed an increase in strength with increasing strain rate because mobile dislocations interacted rapidly with the dislocations in localized regions, whereas elongation and the number of serrations decreased. The strength decreased with increasing temperature, whereas the elongation increased. A martensitic transformation occurred in the 18Mn, 22Mn and 18Mn1.6Al steels tested at $-196^{\circ}C$ due to a decrease in the stacking fault energies with decreasing temperature. An examination of the tensile properties at $-196^{\circ}C$ showed that the strength of the non-Al added high Mn TWIP steels was high, whereas the elongation was low because of the martensitic transformation and brittle fracture mode. Although a martensitic transformation did not occur in the 18Mn1.9Al steel, the strength increased with decreasing temperature because many twins formed in the early stages of the tensile test and interacted rapidly with the dislocations.

Effect of Tempering Condition on Hydrogen Diffusion Behavior of Martensitic High-Strength Steel (템퍼링 조건이 마르텐사이트계 고강도강의 수소확산거동에 미치는 영향)

  • Park, Jin-seong;Hwang, Eun Hye;Lee, Man Jae;Kim, Sung Jin
    • Corrosion Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.242-248
    • /
    • 2018
  • Martensitic high-strength steels revealed superior mechanical properties of high tensile strength exceeding 1000 Mpa, and have been applied in a variety of industries. When the steels are exposed to corrosive environments, however, they are susceptible to hydrogen embrittlement (HE), resulting in catastrophic cracking failure. To improve resistance to HE, it is crucial to obtain significant insight into the exact physical nature associated with hydrogen diffusion behavior in the steel. For martensitic steels, tempering condition should be adjusted carefully to improve toughness. The tempering process involves microstructural modifications, that provide changes in hydrogen diffusion/trapping behavior in the steels. From this perspective, this study examined the relationship between tempering condition and hydrogen diffusion behavior in the steels. Results based on glycerin measurements and hydrogen permeation evaluations indicated that hydrogen diffusion/trapping behavior was strongly affected by the characteristics of precipitates, as well as by metallurgical defects such as dislocation. Tempering condition should be adjusted properly by considering required mechanical properties and resistance to HE.

Experimental Behavior of Circular Tube Members with 600MPa High-strength Steel (600MPa급 고강도 원형강관 부재의 성능 평가)

  • Lee, Eun-Taik;Cho, Jae-Young;Shim, Hyun-Ju;Kim, Jin-Ho
    • Land and Housing Review
    • /
    • v.2 no.1
    • /
    • pp.47-52
    • /
    • 2011
  • Recent advances of technology in materials science have made it easy to respond to user's needs on high performance steel in civil and building structures. The high-performance and high-strength steel are required for large scale structure and high-rise building to have high-strength, high fracture toughness and better weldability etc. Therefore development of 600MPa class steel for mega structure is necessary. high strength steels, however, may have mechanical properties that are significantly different from those of the conventional steels. The application of high-strength steels to building structures should be reviewed as to whether inelastic behavior equivalent to that of conventional steels can be attained or not. This study researched the structural behavior of high strength circular tubes compression and under flexure. Three column tests and three flexural tests were carried out. The suitability of existing design formulae(KBC 2009) and the structural behavior were investigated through these columns and beams with various types.