• 제목/요약/키워드: high strength lightweight concrete

검색결과 173건 처리시간 0.023초

고강도 경량콘크리트를 사용한 철근콘크리트 T 형보의 전단성능 (A Study on Shear Capacity of High Strength Lightweight Reinforced Concrete T-Beams)

  • 김진수;김원호;박성무
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1993년도 가을 학술발표회 논문집
    • /
    • pp.220-225
    • /
    • 1993
  • This paper is an experimental study on shear capacity of the high strength lightweight reinforced concrete beams with shear-depth ratio between 1.5 and 2.5. Thirteen T & rectangular beams were tested to determine their diagonal cracking and ultimate shear capacity. The major variables are shear span-depth ratio (a/d=1.5, 2.0, 2.5), concrete compressive strength(f'c=210, 24., 270㎏/㎠) and tensile steel ratio( =0.6, 1.2%). Based on results obtained from experiment of high strength lightweight reinforced concrete Beam & normal concrete, the following conclusions were drawn. (1) The shear capacity of high-strength lightweight concrete is less 15% than that of normal concrete under same condition. (2) As the results of Comparing this experimental datas with other various formulas. It is regarded that ACI 318-89 shear strength formula related tensile strength is proper to design formula of shear strength of high-strength lightweight reinforced concrete using lightweight concrete.

  • PDF

간편배합설계 방법을 이용한 고강도경량 자기충전콘크리트의 역학적 특성 (Mechanical properties of high strength lightweight self-compacting concrete using simple mixed design)

  • 최연왕;신화철;김용직;최욱;조선규
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.204-207
    • /
    • 2004
  • In this paper, mechanical properties of the high strength lightweight self-compacting concrete with simple mixed design method was investigated. Experimental tests were performed as such compressive strength, splitting tensile strength, modulus of elasticity and density of high strength lightweight self-compacting concrete. The 28 days compressive strength of high strength lightweight self-compacting concrete with the LC replacement ratio of $100\%$ reduces about $31\%$ but LF replacement ratio of $100\%$ increase about $20\%$ compared that of the control concrete. The structural efficiency of high strength lightweight self-compacting concrete increase with proportional to the replacement into of LF. The relationship between the splitting tensile strength and 28 days compressive strength can be represented by the equation $f_s=0.076f_{ck}+0.5582$. The modulus of elasticity was found to be lower than that of normal weight concrete, ranging form 24 to 33 GPa.

  • PDF

고강도 경량콘크리트의 개발, 구조특성 및 실용화 (Development and Application of High-Strength Lightweight Concrete, and its Structural Properties)

  • 최명신;안종문;신성우;강훈;김정식;이재삼
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 봄 학술발표회 논문집(I)
    • /
    • pp.37-44
    • /
    • 1998
  • The objective of this study is development of high strength lightweight concrete and application or structural use. For this, mix proportions for each strength level were selected from lab tests, and adapted to producing ready-mixed concrete in batcher plant. It was very important to prewet the lightweight aggregates sufficiently for producibility and also workability. Splitting tensile strength of high-strength lightweight concrete produced has lower values than that of normal weight concrete, but modulus of rupture and modulus of elasticity are not less than normal weight concrete. The strength reduction factor ($\lambda$) for sand-lightweight concrete make higher than 0.85 present in structures using high-strength lightweight concrete. And it was showed that not parabola distribution but triangular distribution of stress in compression zone.

  • PDF

Development of Ultra-Lightweight High Strength Trench Using Lightweight Polymer Concrete

  • Sung, Chan-Yong;Kim, Young-Ik
    • 한국농공학회지
    • /
    • 제45권7호
    • /
    • pp.20-26
    • /
    • 2003
  • The ultra-lightweight high strength polymer concrete could be used for the drain structures under severe condition. In this study, materials used were unsaturated polyester resin, heavy calcium carbonate, artificial lightweight coarse aggregate and perlite. In the test results, the unit weight of the ultra-lightweight high strength polymer concrete was 946 kg f/$\textrm{m}^3$ and the compressive strength was appeared in 34.5 MPa. The compressive strength, splitting tensile strength, flexural strength, acid resistance and weather resistance were shown in excellently than that of the normal cement concrete. The draining trench had 1m length, 0.24 m width, 0.02 m thickness and 0.07 m height. The developed trench could be effectively used at the draining structures.

인공경량골재의 입도에 따른 고강도 경량콘크리트의 강도변화에 대한 실험적 연구 (An Experimental Study for the Strength Variations of High-strength Lightweight Concrete According to Grain-size of Artificial Lightweight Aggregate)

  • 김성칠;박기찬;최형욱
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제15권5호
    • /
    • pp.209-217
    • /
    • 2011
  • 최근 구조물들이 대형화됨으로써 보통 콘크리트를 사용할 경우 강도 및 내구성에 비하여 중량이 크다는 결점으로 인해 콘크리트 구조물의 설계 및 시공의 안정에 제약을 주게 된다. 이러한 결점을 개선하기 위해서는 자중이 작고 강도가 큰 경량콘크리트가 요구되나, 국내에서는 실용화를 위한 연구가 아직 미비한 실정에 있다. 일반적으로 고온에서 소성시켜 제조된 인공골재는 골재가 팽창되어 내부에 무수한 기포를 가지게 된다. 따라서 골재의 크기에 따라 이들의 기포가 경량콘크리트 비중과 강도에 미치는 영향 연구가 필요하다. 본 연구에서는 국내에서 개발된 화력발전소 폐기물과 점토를 고온에서 소성, 팽창시켜 만든 인공경량골재의 입도별 배합설계를 실시하고 실험을 통하여 경량콘크리트의 비중 및 강도변화를 비교 고찰했다. 또한 경량콘크리트의 고강도 발현을 위한 인공경량골재의 최적 입도비를 제안하였다.

집중하중을 받는 고강도 경량콘크리트 바닥판의 펀칭전단 거동 (Punching Shear Behavior of High-strength Lightweight Concrete Slab Under Concentrated Load)

  • 조선규;곽종원;이종민;문대중
    • 대한토목학회논문집
    • /
    • 제26권1A호
    • /
    • pp.219-228
    • /
    • 2006
  • 경량콘크리트는 보통콘크리트에 비해 가볍다는 장점 때문에 자중의 영향을 많이 받는 장지간 교량과 고층건물에 자주 적용되고 있다. 국내에서는 고층건물에 적용된 예는 있으나 교량에 적용된 실적은 없는 상태이다. 본 연구에서는 고강도 경량 콘크리트의 펀칭전단강도에 대한 실험적 연구를 수행하였으며, 그 결과를 나타내었다. 이를 위하여 고강도 경량콘크리트와 보통콘크리트를 이용한 단순판을 각각 2개씩 제작하였으며, 단순판의 중앙부에 정적하중을 파괴시까지 재하하였다. 경량콘크리트의 압축강도는 47 MPa이며 보통콘크리트의 압축강도는 32 MPa이다. 실험결과 모든 실험체는 펀칭전단으로 파괴되었으며, 파괴시까지 고강도 경량콘크리트를 사용한 단순판의 거동은 일반 콘크리트를 사용한 바닥판과 유사한 거동 특성을 나타내었다. 실험결과를 토대로 고강도 경량콘크리트를 교량바닥판에 적용시 바닥판의 안전성 및 사용성을 분석하였다.

석탄회 인공경량골재를 사용한 고강도 콘크리트의 역학적 특성 (Mechanical Properties of Reinforced High-Strength Concrete Using Fly-ash Artificial lightweight Aggregate)

  • 박완신;한병찬;성수용;윤현도;정수용
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.151-156
    • /
    • 2001
  • Concrete has excellent characteristics as building material and functions relatively well; but it has many problems concerning too heavy weight of the structures. Accordingly, it is the assignment for study in the part of building materials to lighten and high strengthen the weight of concrete structures in order to improve those weak Points; and it seems one of the representative solutions to develop the high strength lightweight aggregate concrete. Based on the experimental results presented, the following conclusions are drawn. The concrete with unit weight of 1.96~2.03t/$m^{2}$, compressive strength of 322~431kgf/$cm^{2}$ was gained. So, it appears that the lightweight aggregate concrete will be useful for low unit weight and high strength lightweight aggregate concrete. In the end, to manufacture artificial lightweight aggregate concrete for construction work is necessary to develope artificial aggregate which has improved performances physically.

  • PDF

광물성 기포제를 이용한 경량기포콘크리트의 물리적성질에 관한 실험적 연구 (A Experimental Study on the Physical properties of Lightweight Foamed Concrete Using Mineral Foam Agent)

  • 유제준;이한승;배규웅;이상섭;연규봉
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2003년도 학술.기술논문 발표회
    • /
    • pp.49-52
    • /
    • 2003
  • The objective of this study the mechanical characteristics of prefoamed lightweight foamed concrete using the mineral foam agent which has high lightness, and strength. The compressive strength of lightweight foamed concrete using mineral foam agent are about 2 times degree high those the of lightweight foamed concrete using vegetable foam agent. Lightweight foamed concrete was able to obtain the result of 50kg/㎠ or more compressive strength, when was unit weight 0.8t/㎡. In the case of the same unit weight of concrete, it is influenced by w/c of foam agent ratio. The paper present extensive data on characteristics of compressive strength of the concrete manufatured with the different factors in mix design and also present optimum mix proportion.

  • PDF

광물성 기포제를 이용한 경량기포콘크리트의 물리적성질에 관한 실험적 연구 (A Experimental Study on the Physical properties of Lightweight Foamed Concrete Using Mineral Foam Agent)

  • 유제준;이한승;배규웅;이상섭;연규봉
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2003년도 학술.기술논문발표회
    • /
    • pp.49.1-52
    • /
    • 2003
  • The objective of this study the mechanical characteristics of preformed lightweight foamed concrete using the mineral foam agent which has high lightness, and strength. The compressive strength of lightweight foamed concrete using mineral foam agent are about 2 times degree high those the of lightweight foamed concrete using vegetable foam agent. Lightweight foamed concrete was able to obtain the result of 50kg/$\textrm{m}^3$ or more compressive strength, when was unit weight 0.8t/$\textrm{m}^3$. In the can of the same unit weight of concrete, it is influenced by w/c of loan agent ratio. The paper present extensive data on characteristics of compressive strength of the concrete manufactured with the different factors in mix design and also present optimum mix proportion.

  • PDF

강섬유보강 고강도 경량콘크리트의 부착에 관한 실험적 연구 (An Experimental Study on the Bond of Steel Fiber Reinforced High-Strength Lightweight Concrete)

  • 민준수;김상우;이시학;김용부
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.613-616
    • /
    • 1999
  • The bond between reinforcing bar and concrete is a significant factor to confirm that they behave uniformly in the reinforced concrete. Thus, the studies on this field have been conducted by many researchers. But for the high strength lightweight concrete few studies have been done. In this study, the steel fiber reinforced high strength lightweight concrete developed to complement the brittleness of the high strength lightweight concrete was studied experimentally to find the local bond stress. Total 20 specimens were tested and the measured test values were compared with those calculated according to ACI 318-95 code and CEB-FIP code, respectively. The results indicate that the maximum bond stress has been influenced by increment of volume fracture of steel fiber, compressive strength and cover, Especially steel fiber caused not only increment of bond strength but also ductile behaviro.

  • PDF