DOI QR코드

DOI QR Code

Punching Shear Behavior of High-strength Lightweight Concrete Slab Under Concentrated Load

집중하중을 받는 고강도 경량콘크리트 바닥판의 펀칭전단 거동

  • Received : 2005.10.11
  • Accepted : 2005.11.30
  • Published : 2006.01.31

Abstract

Because of the advantage of light weight, lightweight concrete is frequently applied to long-span bridges and high-rise buildings. In the country, there is not enough experience for the long-span bridges using lightweight concrete. This paper presents results of an experimental study on the punching shear strength of high-strength lightweight concrete slabs. Four test slabs are fabricated using high-strength lightweight concrete and normalweight concrete and at the center of the test slabs, simulated wheel load is applied until failure. The compressive strengths of lightweight concrete and normalweight concrete are 47MPa and 32MPa, respectively. The test results show the failure mode of all specimens are punching shear and the behaviors of high-strength lightweight concrete slabs are very similar to that of normalweight concrete slabs. Based on the test results, it is discussed the safety and serviceability of high-strength lightweight concrete bridge decks.

경량콘크리트는 보통콘크리트에 비해 가볍다는 장점 때문에 자중의 영향을 많이 받는 장지간 교량과 고층건물에 자주 적용되고 있다. 국내에서는 고층건물에 적용된 예는 있으나 교량에 적용된 실적은 없는 상태이다. 본 연구에서는 고강도 경량 콘크리트의 펀칭전단강도에 대한 실험적 연구를 수행하였으며, 그 결과를 나타내었다. 이를 위하여 고강도 경량콘크리트와 보통콘크리트를 이용한 단순판을 각각 2개씩 제작하였으며, 단순판의 중앙부에 정적하중을 파괴시까지 재하하였다. 경량콘크리트의 압축강도는 47 MPa이며 보통콘크리트의 압축강도는 32 MPa이다. 실험결과 모든 실험체는 펀칭전단으로 파괴되었으며, 파괴시까지 고강도 경량콘크리트를 사용한 단순판의 거동은 일반 콘크리트를 사용한 바닥판과 유사한 거동 특성을 나타내었다. 실험결과를 토대로 고강도 경량콘크리트를 교량바닥판에 적용시 바닥판의 안전성 및 사용성을 분석하였다.

Keywords

References

  1. 건설교통부 (2005) 도로교설계기준
  2. 곽윤근, 장일영 (1998) '구조용 경량콘크리트의 연구동향' 한국콘크리트학회지, 한국콘크리트학회, 제10권 4호, pp.5-15
  3. 신성우, 최명신 (1998) ' 규조용 경량콘크리트의 적용사례 및 전망' 한국콘크리트학회지, 한국콘크리트학회, 제10권 4호, pp.16-26
  4. American Concrete Institute (2005) 'Building Code Requirements for Structural Concrete(ACI 318-05) and Commentary (ACI 318R-05)'
  5. CEB (1990). CEB-FIP MODEL CODE 1990, Final Draft, July
  6. Fang, I.K., Lee, J.H., and Chen, C.R. (1994) 'Behavior of partially restrained slabs under concentrated load' ACI Structural Journal, Vol.97, No.2, pp.133-139
  7. Gesund, H. (1981) 'Limit design of slabs for concentrated loads' Proceedings, ASCE, Vol.107, ST9, pp.1839-1856
  8. Gilbert, R.I. (1988) 'Time effects in concrete structures', Elsvier
  9. Kinnunen, S., Nlyander, H. (1960) 'Punching of concrete slabs without shear reinforcement'. Transactions of the Royal Institute of Technology, Stockholm, No.158
  10. Kinnunen, S. (1963) 'Punching of concrete slabs with two-way reinforcement'. Transactions of the Royal Institute of Technology, Stockholm, No.198
  11. Macgregor, J.G. (2005) 'Reinforced concrete: mechanics and design', Prentice Hall
  12. Marzouk, H. and Hussein, A. (1991) 'Experimental investigation on the behavior of high-strength concrete slabs' ACI Structural Journal, Vol.88, No.6, pp.701-713
  13. Moe, J. 'Shearing strength of reinforced concrete slabs and footings under concentrated loads', Development Department Bulletin D47, Portland Cement Association, Skokie, III
  14. Osman, M., Marzouk, H., and Helmy, S. (2000) 'Behavior of high-strength lightweight concrete slabs under punching loads' ACI Structural Journal, Vol.97, No.3, pp.492-498
  15. Youn, S.G. and Chang, S.P. (1996) 'Behavior of cmposite decks subjected to static and fatigue loading' ACI Structural Journal. Vol.95, No.3, pp.249-258
  16. Perdikaris, P.C., Beim, S.R. and Bousias, S.N. (1989) 'Slab continuity effect on ultimate and fatigue strength of reinforced concrete bridge deck models' ACI Structural Journal, Vol.86, No.4, pp.483-491
  17. Park, R. and Gamble, W.L. (2000) 'Reinforced concrete slabs', John Wiley & Sons, INC
  18. Szilard, R. (2004) 'Theories and applications of plate analysis', John Wiley & Sons, INC
  19. Zhang, M.H., Li, L., and Paramasivam, P. (2005) 'shrinkage of high-strength lightweight aggregate concrete exposed to dry environment' ACI Material Journal, Vol.102, No.2, pp.86-92