• 제목/요약/키워드: high speed collision

Search Result 183, Processing Time 0.026 seconds

A Study of the Effects of Pressure Velocity and Fluid Viscosity in Abrasive Machining Process (입자연마가공에서의 압력 속도 및 유체점도의 영향에 대한 고찰)

  • Yang, Woo-Yul;Yang, Ji-Chul;Sung, In-Ha
    • Tribology and Lubricants
    • /
    • v.27 no.1
    • /
    • pp.7-12
    • /
    • 2011
  • Interest in advanced machining process such as AJM(abrasive jet machining) and CMP(chemical-mechanical polishing) using micro/nano-sized abrasives has been on the increasing demand due to wide use of super alloys, composites, semiconductor and ceramics, which are difficult to or cannot be processed by traditional machining methods. In this paper, the effects of pressure, wafer moving velocity and fluid viscosity were investigated by 2-dimensional finite element analysis method considering slurry fluid flow. From the investigation, it could be found that the simulation results quite corresponded well to the Preston's equation that describes pressure/velocity dependency on material removal. The result also revealed that the stress and corresponding material removal induced by the collision of particle may decrease under relatively high wafer moving speed due to the slurry flow resistance. In addition, the increase in slurry fluid viscosity causes the reduction of material removal rate. It should be noted that the viscosity effect can vary with the shape of abrasive particle.

EXPERIMENTAL EVALUATION OF USED CARS FOR FRONTAL COLLISION COMPATIBILITY

  • Lim, J.H.;Park, I.S.;Heo, S.J.
    • International Journal of Automotive Technology
    • /
    • v.7 no.6
    • /
    • pp.715-720
    • /
    • 2006
  • This research investigates injury values and vehicle deformation for vehicle frontal crash compatibility. To investigate compatibility in an individual case, it is possible to impact two vehicles and evaluate the injury values and deformations in both vehicles. In this study, four tests were conducted to evaluate compatibility. A large and mini vehicle were subjected to a frontal car-to-car crash test at a speed of 48.3 km/h with an offset of 40%. An inclination car-to-car crash test using the large and small vehicle were conducted at 30 km/h at a $30^{\circ}$ angle. The results of the 48.3 km/h, car-to-car frontal crash revealed extremely high injury values on the chest and upper leg of the Hybrid III 50% driver dummy with seatbelt in the mini vehicle compared to the large vehicle. For the 30 km/h, car-to-car inclination crash, however, injury values in the small vehicle were 1.5 times higher compared to the large vehicle.

Performance Analysis of Contention based Directional MAC Protocol (지향성 안테나 기반 경쟁 MAC 프로토콜의 성능 분석)

  • Na, Woong-Soo;Cho, Sung-Rae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.7B
    • /
    • pp.827-833
    • /
    • 2011
  • Directional MAC protocols have drawn great attentions recently in super high speed wireless local/personal area networks due to their higher antenna gain, better spatial reuse, longer transmission range, and lower interference. Despite of these merits, directional MAC protocols suffer from deafness problem. The deafness problem occurs if a node does not answer an RTS frame addressed to it. To overcome this problem, directional MAC protocols have aimed at avoiding the deafness problem using multiple control frames or advance notice techniques or distinguishing deafness from collision. In this paper, we analyze the performance of these schemes in deafness environments with some scenarios. Through performance analysis, we compare the performance of these schemes through evaluating actual network throughput.

Study on Reliability of New Digital Tachograph for Traffic Accident Investigation and Reconstruction (교통사고 조사 및 재현에서 신형 전자식운행기록계의 신뢰성에 관한 연구)

  • Park, Jongjin;Joh, Geonwoo;Park, Jongchan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.6
    • /
    • pp.615-622
    • /
    • 2015
  • Recently Digital-TachoGraph(DTG) was mounted mandatorily in commercial vehicles(Taxi, Bus, etc.). DTG records accurate and detailed information of the running state of vehicles related to traffic accident, such as Time, Distance, Velocity, RPM, Brake ON/OFF, GPS, Azimuth, Acceleration. Thus those standardized data can play an important role in traffic accident investigation and reconstruction. To develope the accurate and objective method using the DTG data for the reconstruction of traffic accident, we had conducted several tests such as driving test, high speed circuit test, braking test, slalom test at Korea Automobile Testing & Research Institute(KATRI), and collision test at Korea Automobile insurance repair Research and Training center(KART) with the vehicle equipped with several DTG. Development of the program which enables the reading and analysis of the DTG data was followed. In the experiments, we have found velocity error, RPM error, brake signal error and azimuth error in several products, and also non-continuous event data. The cause of these errors was deduced to be related to the correction factor, the durability of electronic parts and the algorithm.

A Study on Visualization of Fine Dust Captured by FOG Droplet (미세액적에 의한 미세먼지 포집 가시화 연구)

  • Oh, Jinho;Kim, Hyun Dong;Lee, Jung-Eon;Yang, Jun Hwan;Kim, Kyung Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.3
    • /
    • pp.39-45
    • /
    • 2021
  • An experiment to visualize fine dust captured by FOG droplet is conducted. Coal dust with 23.56 MMD (Mean Median Diameter) and water with 17.02 MMD is used as fine dust and FOG droplet. Long distance microscope and high-speed camera are used to capture the images of micro-scale particles sprinkled by acrylic duct. After measuring and comparing the size of the coal dust and FOG droplet to MMD, process to seize the coal dust with FOG droplet is recorded in 2 conditions: Fixed and Floated coal dust in the floated FOG droplet flow. In both conditions, a coal dust particle is collided and captured by a FOG droplet particle. A FOG droplet particle attached at the surface of the coal dust particle does not break and remains spherical shape due to surface tension. Combined particles are rotated by momentum of the particle and fallen.

The Effect of the Deformation on the Sensitivity of a Flexible PDMS Membrane Sensor to Measure the Impact Force of a Water Droplet (액적의 충격력 측정을 위한 유연 멤브레인 센서의 PDMS 변형에 의한 민감도의 영향)

  • Kang, Dong Kwan;Lee, Sangmin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.5
    • /
    • pp.16-21
    • /
    • 2022
  • This study investigates the effect of the deformation on the sensitivity of a flexible polydimethylsiloxane (PDMS) membrane sensor. A PDMS membrane sensor was developed to measure the impact force of a water droplet using a silver nanowire (AgNW). The initial deformation of the membrane was confirmed with the application of a tensile force (i.e., tension) and fixing force (i.e., compressive force) at the gripers, which affects the sensitivity. The experimental results show that as the tension applied to the membrane increased, the sensitivity of the sensor decreased. The initial electrical resistance increased as the fixing force increased, while the sensitivity of the sensor decreased as the initial resistance increased. The movement of the membrane due to the impact force of the water droplet was observed with a high-speed camera, and was correlated with the measured sensor signal. The analysis of the motion of the membrane and droplets after collision confirmed the periodic movement of not only the membrane but also the change in the height of the droplet.

Acquisition and Verification of Dynamic Compression Properties for SHPB of Woven Type CFRP (Woven Type CFRP의 SHPB에 대한 동적 압축 물성 획득 및 검증)

  • Park, Ki-hwan;Kim, Yeon-bok;Kim, Jeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.5
    • /
    • pp.363-372
    • /
    • 2020
  • Dynamic compressive material properties at high strain rates is essential for improving the reliability of finite element analysis in dynamic environments, such as high-speed collisions and high-speed forming. In general, the dynamic compressive material properties for high strain rates can be obtained through SHPB equipment. In this study, SHPB equipment was used to acquire the dynamic compressive material properties to cope with the collision analysis of Woven tpye CFRP material, which is being recently applied to unmanned aerial vehicles. It is also used as a pulse shaper to secure a constant strain rate for materials with elastic-brittle properties and to improve the reliability of experimental data. In the case of CFRP material, since the anisotropic material has different mechanical properties for each direction, experiments were carried out by fabricating thickness and in-plane specimens. As a result of the SHPB test, in-plane specimens had difficulty in securing data reproducibility and reliability due to fracture of the specimens before reaching a constant strain rate region, whereas in the thickness specimens, the stress consistency of the specimens was excellent. The data reliability is high and a constant strain rate range can be obtained. Through finite element analysis using LS-dyna, it was confirmed that the data measured from the pressure rod were excessively predicted by the deformation of the specimen and the pressure rod.

A Study on Stochastic Wave Propagation Model to Generate Various Uninterrupted Traffic Flows (다양한 연속 교통류 구현을 위한 확률파장전파모형의 개발)

  • Chang, Hyun-Ho;Baek, Seung-Kirl;Park, Jae-Beom
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.4 s.75
    • /
    • pp.147-158
    • /
    • 2004
  • A class of SWP(Stochastic Wane Propagation) models microscopically mimics individual vehicles' stochastic behavior and traffic jam propagation with simplified car-following models based on CA(Cellular Automata) theory and macroscopically captures dynamic traffic flow relationships based on statistical physics. SWP model, a program-oriented model using both discrete time-space and integer data structure, can simulate a huge road network with high-speed computing time. However, the model has shortcomings to both the capturing of low speed within a jam microscopically and that of the density and back propagation speed of traffic congestion macroscopically because of the generation of spontaneous jam through unrealistic collision avoidance. In this paper, two additional rules are integrated into the NaSch model. The one is SMR(Stopping Maneuver Rule) to mimic vehicles' stopping process more realistically in the tail of traffic jams. the other is LAR(Low Acceleration Rule) for the explanation of low speed characteristics within traffic jams. Therefore, the CA car-following model with the two rules prevents the lockup condition within a heavily traffic density capturing both the stopping maneuver behavior in the tail of traffic jam and the low acceleration behavior within jam microscopically, and generates more various macroscopic traffic flow mechanism than NaSch model's with the explanation of propagation speed and density of traffic jam.

Characteristics Analysis of Linear Induction Motor Considering Airgap variation for Railway Transit (공극변화를 고려한 철도차량용 선형 유도전동기 특성 연구)

  • Lee, Byung-Song;Lee, Hyung-Woo;Park, Chan-Bae;Han, Kyung-Hee;Kwon, Sam-Young;Park, Hyun-June
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1610-1615
    • /
    • 2007
  • This paper presents a characteristics of linear induction motor considering airgap variation for railway transit in order to achieve high performance of the vehicle. The operating principle of a LIM(Linear induction motor) is identical to a rotary induction motor. Space-time variant magnetic fields are generated by the primary part across the airgap and induce the electro-motive force(EMF) in the secondary part, a conducting sheet. This EMF generates the eddy currents, which interact with the airgap flux and so produce the thrust force known as Loren's force. Even though the operating principal is exactly same as a rotary motor, the linear motor has a finite length of the primary or secondary parts and it causes static and dynamic end-effect which is the discontinuous airgap flux phenomenon. This end-effect causes the deterioration of the system performance, especially in high-speed operation. Another problem is that construction tolerance restricts the minimum airgap in order to prevent a collision between the primary part and the secondary reaction plate. More over, as the airgap length is getting smaller, the attraction force between the primary part and secondary parts is getting larger dramatically and the attraction force would be another friction against propulsion. Therefore, it is necessary to figure out the characteristics of linear induction motor considering airgap variation in order to achieve high performance of the vehicle. The dynamic model of LIM taking into account end-effects is derived. Then the modified mechanical load equation considering the effect of the attraction and thrust force according to the airgap variation is analyzed. The simulation results are presented to show the effect of the LIM according to the airgap variation.

  • PDF

Thrust Force Characteristics Analysis of Linear Induction Motor Considering Airgap variation for Railway Transit (공극변화를 고려한 철도차량용 선형 유도전동기 특성 연구)

  • Lee, Byung-Song
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1903-1908
    • /
    • 2008
  • This paper presents a characteristics of linear induction motor considering airgap variation for railway transit in order to achieve high performance of the vehicle. The operating principle of a LIM(Linear induction motor) is identical to a rotary induction motor. Space-time variant magnetic fields are generated by the primary part across the airgap and induce the electro-motive force(EMF) in the secondary part, a conducting sheet. This EMF generates the eddy currents, which interact with the airgap flux and so produce the thrust force known as Loren's force. Even though the operating principal is exactly same as a rotary motor, the linear motor has a finite length of the primary or secondary parts and it causes static and dynamic end-effect which is the discontinuous airgap flux phenomenon. This end-effect causes the deterioration of the system performance, especially in high-speed operation. Another problem is that construction tolerance restricts the minimum airgap in order to prevent a collision between the primary part and the secondary reaction plate. More over, as the airgap length is getting smaller, the attraction force between the primary part and secondary parts is getting larger dramatically and the attraction force would be another friction against propulsion. Therefore, it is necessary to figure out the characteristics of linear induction motor considering airgap variation in order to achieve high performance of the vehicle. The dynamic model of LIM taking into account end-effects is derived. Then the modified mechanical load equation considering the effect of the attraction and thrust force according to the airgap variation is analyzed. The simulation results are presented to show the effect of the LIM according to the airgap variation.

  • PDF