• Title/Summary/Keyword: high rise buildings

Search Result 1,532, Processing Time 0.026 seconds

The Influence on the Stack Effect with the Opening of Smoke Ventilators in High-rise Buildings (초고층 건축물에서 배연창 개방이 연돌효과에 미치는 영향)

  • Lim, Chae-Hyun;Kim, Bum-Gyue;Yeo, Yong-Ju;Park, Yong-Hwan
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.209-213
    • /
    • 2008
  • The effects on the performance of natural smoke exhaust ventilators installed in high-rise buildings were analyzed depending on the wind velocities and smoke temperatures using CONTAMW tool. The results showed that the smoke exhaust ventilators can maintain given performances in such conditions as low smoke temperatures and low wind velocities. However, high smoke temperatures and high wind velocities can prevent the smoke ventilators to exhaust smokes from the fire room. Significant changes in stack effects in high-rise buildings can also occur with the opening of smoke ventilators in the fire floor.

  • PDF

R&D Monitoring and Novel Technology Exploration Concerning Research Area about Fire in High-rise Building (고층 건물 화재 관련 R&D 위상 분석 및 신기술 탐색 연구)

  • Shim, We;Choi, Jaekyung;Chung, Hyunsang;Heo, Yoseob;Seo, Seongho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.2_2
    • /
    • pp.271-280
    • /
    • 2020
  • Due to the development of the urban economy, high-density buildings and skyscrapers have continued to increase in order to alleviate high population densities and to make efficient use of urban space. However, a fire in a high-rise building is a disaster that can lead to massive casualties and property damage because of the difficulty of firefighting and escaping. Various studies have been conducted on these high-rise buildings because they are sympathetic to these difficulties all over the world. In this paper, trends of researches and technologies related to fire in high-rise buildings are analyzed synthetically through thesis and patent data. In other words, we explored the trends of various studies that have been carried out so far through the thesis, and performed technical monitoring on actual implemented technology and newly implemented technologies through patent data. Through this research, we have studied the present and the future of technology for high-rise building fire.

Elastic Seismic Design of Steel Highrise Buildings in Regions of Moderate Seismicity (중진대 철골조 초고층 건물의 탄성내진설계)

  • Lee, Cheol Ho;Kim, Seon Woong
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.5
    • /
    • pp.553-562
    • /
    • 2006
  • Lateral loading due to wind or earthquake is a major factor that affects the design of high-rise buildings. This paper highlights the problems associated with the seismic design of high-rise buildings in regions of strong wind and moderate seismicity. Seismic response analysis and performance evaluation were conducted for wind-designed concentrically braced steel high-rise buildings in order to check the feasibility of designing them per elastic seismic design criterion (or strength and stiffness solution) in such regions. Review of wind design and pushover analysis results indicated that wind-designed high-rise buildings possess significantly increased elastic seismic capacity due to the overstrength resulting from the wind serviceability criterion. The strength demand-to-capacity study showed that, due to the wind design overstrength, high-rise buildings with a slenderness ratio of larger than four or five can elastically withstand even the maximum considered earthquake (MCE) with the seismic performance level of immediate occupancy under the limited conditions of this study. A step-by-step seismic design procedure per the elastic criterion that is directly usable for practicing design engineers is also recommended.

Seismic Risk Assessment of Existing Low-rise Reinforced Concrete Buildings in Korea

  • LEE, Kang Seok;Jung, Ju-Seong;Choi, Yun-Chul
    • Architectural research
    • /
    • v.20 no.1
    • /
    • pp.17-25
    • /
    • 2018
  • Countermeasures against earthquake disasters such as the seismic capacity evaluation and/or retrofit schemes of buildings, especially existing low-rise reinforced concrete buildings, have not been fully performed since Korea had not experienced many destructive earthquakes in the past. However, due to more than 1200 earthquakes with low or moderate intensity in the off-coastal and inland of Korea during the past 20 years, and due to the recent moderate earthquakes in Korea, such as the 2016 Gyeongju Earthquake with M=5.8 and the 2017 Pohang Earthquake with M=5.4, the importance of the future earthquake preparedness measures is highly recognized in Korea. The main objective of this study is to provide the basic information regarding seismic capacities of existing low-rise reinforced concrete buildings in Korea. In this paper, seismic capacities of 14 existing low-rise reinforced concrete public buildings in Korea are evaluated based on the Japanese Standard for Evaluation of Seismic Capacity of Existing Reinforced Concrete Buildings. Seismic capacities between existing buildings in Korea and those in Japan is compared, and the relationship of seismic vulnerability of Korean buildings and Japanese buildings damaged due to severe earthquakes are also discussed. Results indicated that Korean existing low-rise reinforced concrete buildings have a narrow distribution of seismic capacities and they are relatively lower than Japanese buildings, and are also expected to have severe damage under the earthquake intensity level experienced in Japan. It should be noted from the research results that the high ductility in Korean existing low-rise buildings obtained from the Japanese Standard may be overestimated, because most buildings investigated herein have the hoop spacing wider than 30 cm. In the future, the modification of strength and ductility indices in the Japanese Standard to propose the seismic capacity evaluation method of Korean buildings is most needed.

A Study on the Improvement of Fire Safety in high-rise Building Construction in Legal aspects (법규적 측면에서 고찰한 고층 건축물 공사현장 화재안전 확보방안)

  • Park, Chan-Seok;Jeong, Il-Kyun
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.1
    • /
    • pp.21-32
    • /
    • 2015
  • High rising of the buildings offers a number of risk factors than ever before with regard to fire prevention. Especially in the construction site of high-rise buildings, people waste golden-time during the evacuation because temporary fire fighting facilities are not installed and transferred to a large fire because of fire suppression failure. In this study, the researcher derives the problems of fire protection in high-rise buildings construction sites and proposed the measures in such the legal aspects as fire building construction code and etc. There are the legal improvements such as orders of construction suspension in the problems of fire safety, appointing fire safety manager, temporary fire protection installation standards, enhancing penalty provisions regarding the use of fire, operating self fire brigade, confirming on-site after completing fire-protection facalities, establishment or strengthening special fire-protection investigations.

Application Examples of CFD at the Planning Stage of High-Rise Buildings

  • Hiroto, Kataoka;Yoshiyuki, Ono;Kota, Enoki;Yuichi, Tabata;Satoko, Kinashi
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.3
    • /
    • pp.145-156
    • /
    • 2022
  • Application examples of computational fluid dynamics (CFD) in the planning stage of high-rise buildings are introduced. First, we introduce examples of applications in the environmental field. The pedestrian wind environment was one of the earliest practical examples of CFD. CFD was also employed to validate the heat island mitigation measures proposed as part of the new construction plan. Second, application examples of wind-force evaluations are introduced. Prediction examples are presented for the peak wind pressure around a complex-shaped building and the wind force evaluation for a base-isolated building. The results prove that the results of the proper execution of CFD are equivalent to those of the wind tunnel experiment. As examples of CFD applications of other issues related to high-rise building planning, we introduce snow accretion on outer walls and high-temperature exhaust from emergency generators. Finally, the future prospects for the use of CFD are discussed.

The Post-Occupancy Evaluation of Outdoor Environments in Bundang Model Complex: With Super High-rise.High-rise.Low-rise Apartments in Hyundai Apartment Complex (분당시범단지 초고층.고층.저층단지의 옥외환경평가 : 현대아파트 단지를 중심으로)

  • 김유일;함지현;강석희
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.27 no.2
    • /
    • pp.130-139
    • /
    • 1999
  • The survey site, the Hyundai Apartment Complex in the Bundang Model Complex, includes three housing layout types; super high-rise, high-rise and low-rise apartment buildings. The site includes artificial ground over underground parking lots. The overall objective of this study is to evaluate social and physical factors of housing environments in each types of layout. The data has been complied from residents of apartment through questionnaire. The questionnaire include elements of neighborhood, outdoor space, parking zones, and the overall complex design in each layout types. The predictors of outdoor space satisfaction in apartment housing complex are found as follows: "abundance of trees in quantity", "the role as front yards", "harmony of buildings with landscape", "the more distance between buildings" and "maintenance quality of site". Layout of super high-rise apartment site is most satisfied. Introduction of car-free deck space is favored by resident because of safty and quiet resting area. However the low quality of green and lack of shades on the artificial land are identified as problems.on the artificial land are identified as problems.

  • PDF

A Study on the Fire Prevention of High-Rise Apartment Buildings in Korea (우리나라 초고층 집합주택의 방재계획에 관한 연구(I))

  • 이영재;오병칠;반영식;윤명오;이건영
    • Fire Science and Engineering
    • /
    • v.6 no.2
    • /
    • pp.3-13
    • /
    • 1992
  • As the society is industrialization and urbanization, the increase in density of urban population brought about the rise of the land value and the shortage of the land for housing, as a result urban housing shortage was on the rise in a new social problem. According to this high-rise apartment buildings is under construction, but that is required habitation and safety, especially security for fire safety, because it is various age group residents in for 24 hours. Consequently this study aims to present problems and countermeasures against fire safety of high-rise apartment buildings and to construct a residential space to minimize human life and property damage caused by a fire.

  • PDF

Improvement of a Requirement for Providing Special Boundary Element Considering Feature of Domestic High-rise Shear Walls

  • Kim, Taewan
    • Architectural research
    • /
    • v.15 no.1
    • /
    • pp.43-52
    • /
    • 2013
  • The reinforced concrete shear walls are being widely used in the domestic high-rise residential complex buildings. If designed by current codes, the special boundary element is needed in almost all high-rise shear wall buildings. This is because the equation for determining the provision of the special boundary element in the current codes cannot reflect the characteristics of the domestic high-rise shear walls with high axial load ratio and high proportion of elastic displacement to total displacement. In this study, a new equation to be able to reflect the characteristics is proposed. By using the equation, the special boundary element may not be necessary in certain cases so that structural engineers can relieve the burden of installing the special boundary element in every high-rise shear wall.

Novel optimal intensity measures for probabilistic seismic analysis of RC high-rise buildings with core

  • Pejovic, Jelena R.;Serdar, Nina N.;Pejovic, Radenko R.
    • Earthquakes and Structures
    • /
    • v.15 no.4
    • /
    • pp.443-452
    • /
    • 2018
  • In this paper the new intensity measures (IMs) for probabilistic seismic analysis of RC high-rise buildings with core wall structural system are proposed. The existing IMs are analysed and the new optimal ones are presented. The newly proposed IMs are based on the existing ones which: 1) comprise a wider range of frequency velocity spectrum content and 2) are defined as the integral along the velocity spectrum. In analysis characteristics of optimal IMs such as: efficiency, practicality, proficiency and sufficiency are considered. As prototype buildings, RC high-rise buildings with core wall structural system and with characteristic heights: 20-storey, 30-storey and 40-storey, are selected. The non-linear 3D models of the prototype buildings are constructed. 720 non-linear time-history analyses are conducted for 60 ground motion records with a wide range of magnitudes, distances to source and various soil types. Statistical processing of results and detailed regression analysis are performed and appropriate demand models which relate IMs to demand measures (DMs), are obtained. The conducted analysis has shown that the newly proposed IMs can efficiently predict the DMs with minimum dispersion and satisfactory practicality as compared to the other commonly used IMs (e.g., PGA and $S_a(T_1)$). The newly proposed IMs overcome difficulties in calculating of integral along the velocity spectrum and present adequate replacement for IMs which comprise a wider range of frequency velocity spectrum content.