• Title/Summary/Keyword: high resolution multichannel

Search Result 26, Processing Time 0.029 seconds

Acoustic Event Detection in Multichannel Audio Using Gated Recurrent Neural Networks with High-Resolution Spectral Features

  • Kim, Hyoung-Gook;Kim, Jin Young
    • ETRI Journal
    • /
    • v.39 no.6
    • /
    • pp.832-840
    • /
    • 2017
  • Recently, deep recurrent neural networks have achieved great success in various machine learning tasks, and have also been applied for sound event detection. The detection of temporally overlapping sound events in realistic environments is much more challenging than in monophonic detection problems. In this paper, we present an approach to improve the accuracy of polyphonic sound event detection in multichannel audio based on gated recurrent neural networks in combination with auditory spectral features. In the proposed method, human hearing perception-based spatial and spectral-domain noise-reduced harmonic features are extracted from multichannel audio and used as high-resolution spectral inputs to train gated recurrent neural networks. This provides a fast and stable convergence rate compared to long short-term memory recurrent neural networks. Our evaluation reveals that the proposed method outperforms the conventional approaches.

Development of Multichannel Marine Seismic Data Acquisition System and its Application (다중채널 해양탄성파탐사 시스템개발과 응용)

  • Shin, Sung-Ryul;Kim, Chan-Su;Yeo, Eun-Min;Kim, Young-Jun
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.144-145
    • /
    • 2005
  • In this study, we have developed the high resolution multichannel seismic data acquisition system and shallow marine seismic source. It is easy to operate our source system which utilizes piezoelectric transducer of high electrical power. According to water depth, survey condition and purpose, transducer number of source system can be easily changed in order to maximize field applicability. In the recording part, we used 24 bits and 8 channel high speed A/D board in order to achieve the improvement of data quality and the efficiency of data acquisition. The developed system was tested and varied with the data acquisition parameters such as source-receiver offset, and transducer number versus water depth for the field application.

  • PDF

Development of High Resolution Multichannel Seismic Data Acquisition System and its Field Application (다중채널 고분해능 해양탄성파탐사 시스템 개발 및 현장적용)

  • Kim Youngjun;Yeo Eunmin;Kim Chansu;Shin Sungryul
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.293-298
    • /
    • 2005
  • In this study, we have developed the high resolution multichannel seismic data acquisition system and shallow marine seismic source. It is easy to operate and handle our source system which utilizes piezoelectric transducer of high electrical power. We have manufactured two 4-channel streamers for multi-channel marine seismic survey. In the recording part, we used 24bits and 8 channel high speed A/D board. Therefore, we could achieve the improvement of data quality and the efficiency of data acquisition. We compared the developed system with the conventional system to demonstrate its field applicability.

  • PDF

High-resolution seismic reflection surveying at paved areas using an S-wave type land streamer

  • Inazaki Tomio
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.1
    • /
    • pp.1-6
    • /
    • 2004
  • High-resolution S-wave reflection surveying has been successfully conducted on paved areas using a Land Streamer originally designed by the author. The main feature of the Land Streamer tool is the non-stretch woven belt on which geophone units are mounted to form a multichannel geophone array similar to a marine streamer. Because it is easily towed by a vehicle or by hand, the tool leads to high performance in field measurements and resultant cost-effectiveness of high-resolution reflection surveys. Although each geophone unit is coupled to the pavement through a metallic baseplate instead of being firmly planted in the ground, the Land Streamer tool provides comparatively clean data, unaffected by traffic noise even on the pavement. Thus, the tool is capable of expanding the opportunity for S-wave reflection surveys in urban areas where many surfaces are paved and traffic noise is severe. A series of high-resolution S-wave reflection surveys on paved areas delineated detailed structures of surface layers shallower than 60 m, and proved the wide applicability of the tool to engineering, environmental applications, and earthquake disaster prevention projects.

DCT-based Regularized High-Resolution Image Reconstruction Algorithm (DCT 기반의 정규화 된 고해상도 영상 복원 알고리즘)

  • 박진열;이승현;강문기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.8B
    • /
    • pp.1558-1566
    • /
    • 1999
  • While high resolution images are required for various applications, aliased low-resolution images are only available due to the physical limitations of sensors. In this paper, we propose an algorithm to reconstruct a high resolution image from multiple aliased low-resolution images, which is based on the generalized multichannel deconvolution technique. The conventional approaches are based on the discrete Fourier transform (DFT) since the aliasing effect is easily analyzed in the frequency domain. However, the useful solution may not be available in many cases, i.e., the underdetermined cases or the insufficient subpixel information cases. In order to compensate for such ill-posedness, the generalized multichannel regularization was adopted in the spatial domain. Furthermore, the usage of the discrete cosine transform instead of the DFT leads to the computationally efficient reconstruction algorithm. The validity of the proposed algorithm is both theoretically and experimentally demonstrated in this paper. It is also shown that the effect of inaccurate motion information is reduced by regularization.

  • PDF

Immersive Multichannel Display for Virtual Reality (가상현실을 위한 몰입형 멀티채널 디스플레이)

  • Kim, Sang Youn;Im, Sung Min;Kim, Do Yoon;Lee, Jae Hyub
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.6 no.3
    • /
    • pp.131-139
    • /
    • 2010
  • Virtual reality(VR) technology allows users to experience the same sensation as if they look and feel real objects, and furthermore it enables users to experience phenomena in virtual environment which are difficult to illustrate in real world. A multichannel display is one of the virtual reality systems for generating high-quality images and guaranteeing a wide view angle using multiple projectors. In this work, we present the multichannel display system whose resolution is $4096{\times}1536$. We implement an automatic calibration (geometric and color) method for compensating the distorted image and color. The results clearly show the proposed system provides continuous and smooth images.

A Study on the Improvement of the Multichannel Sea Surface Temperature(MCSST) Software for Mini-Computer System (소/중형 컴퓨터를 위한 MCSST 소프트웨어 개선에 관한 연구)

  • 심태보;장덕홍
    • Korean Journal of Remote Sensing
    • /
    • v.5 no.1
    • /
    • pp.41-56
    • /
    • 1989
  • Improvement of the multichannel sea surface temperature(MCSST) software, which had been developed for the purpose of operating under mainframe computer system, was seeked in order to operate effectively in a mini computer system. CPU time and processing time, which is not a major factor under mainframe computer system, become a critical factor in real time image processing under mini computer system. Due to fixed kernel size(3$\times$4) of the old MCSST software, high spatial resolution characteristics of the original image received from satellites were apparently degraded when images are transformed into a cartesian coordinate system after geometrical distortions of the image due to earth curvature are removed. CPU and processing time were reduced to 0.13 and 0.15~0.22 comparing with the old MCSST's, respectively, by applying disk block I/O and M/T queue I/O method under VAX-11/750 computer. The high resolution quality (1.1km in AVHRR) of the processed image was guaranted using 2$\times$2 kernel size and applying moving window techniques without sacrificing CPU and processing time much.

HPA MMIC to W/G Antenna Transition Loss Analysis and Development Results of W-band Transmitter Module

  • Kim, Wansik;Jung, Juyong;Lee, Juyoung;Kim, Jongpil
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.236-241
    • /
    • 2019
  • This paper will read about a multichannel frequency-modulated continuous wave (FMCW) radar sensor with switching transmit (TX) antennas is developed at W-band. To achieve a high angular resolution, a uniform linear array consisting of 5 switching-TX and 12 receive (RX) antennas is employed with the digital beamforming technique. The overall radar front-end module comprises a W-band transceiver and TX/RX antennas. A multichannel transceiver module consists of 5 up-conversion and 12 down-conversion channels, where one of the TX channels is sequentially switched ON. For developing transmitter, we developed an HPA (high power amplified) MMIC chip for W-band radar system and fabricated a transmitter module using this chip. In order to develop the W-band transmitter, we analyzed the important antenna transition structure from HPA MMIC line to W/G (Waveguide)antenna via M/S(microstrip) and fabricated it with 5 transmission channels. As a result, the output power of the transmitter was within 1 dB of the error range after analysis and measurement under normal temperature and environmental conditions.

Current Trends of the Synthetic Aperture Radar (SAR) Satellite Development and Future Strategy for the High Resolution Wide Swath (HRWS) SAR Satellite Development (SAR(Synthetic Aperture Radar) 위성 개발현황 및 향후 HRWS(High Resolution Wide Swath) SAR 위성 개발전략)

  • Ko, Ungdai;Seo, Inho;Lee, Juyoung;Jeong, Hyunjae
    • Journal of Space Technology and Applications
    • /
    • v.1 no.3
    • /
    • pp.337-355
    • /
    • 2021
  • This paper is made to suggest a future strategy for the Korean High Resolution Wide Swath Synthetic Aperture Radar (HRWS SAR) satellite development by surveying the current trends for the SAR satellite technologies. From the survey, the latest SAR technology trends are revealed of using Digital Beam-Forming (DBF), SCan-On-Receive (SCORE), Displaced Phase Center Antenna (DPCA), interferometry, and polarimetry for exploiting the SAR imagery. Based on the latest SAR technology trends and the foreign HRWS SAR development cases, the strategy for the future HRWS Korean SAR satellite development is suggested to develop the DPCA and SCORE technologies by using the KOrea Multi-Purpose SATellite-6 (KOMPSAT-6) which is going to launch in a few years, and consequently to develop the HRWS SAR satellites which can monitor the whole Earth at weekly intervals.

Regularized Adaptive High-resolution Image Reconstruction Considering Inaccurate Subpixel Registration (부정확한 부화소 단위의 위치 추정 오류에 적응적인 정규화된 고해상도 영상 재구성 연구)

  • Lee, Eun-Sil;Byun, Min;Kang, Moon-Gi
    • Journal of Broadcast Engineering
    • /
    • v.8 no.1
    • /
    • pp.19-29
    • /
    • 2003
  • The demand for high-resolution images is gradually increasing, whereas many imaging systems yield aliased and undersampled images during image acquisition. In this paper, we propose a high-resolution image reconstruction algorithm considering inaccurate subpixel registration. A regularized Iterative reconstruction algorithm is adopted to overcome the ill-posedness problem resulting from inaccurate subpixel registration. In particular, we use multichannel image reconstruction algorithms suitable for application with multiframe environments. Since the registration error in each low-resolution has a different pattern, the regularization parameters are determined adaptively for each channel. We propose a methods for estimating the regularization parameter automatically. The preposed algorithm are robust against the registration error noise. and they do not require any prior information about the original image or the registration error process. Experimental results indicate that the proposed algorithms outperform conventional approaches in terms of both objective measurements and visual evaluation.