DOI QR코드

DOI QR Code

Current Trends of the Synthetic Aperture Radar (SAR) Satellite Development and Future Strategy for the High Resolution Wide Swath (HRWS) SAR Satellite Development

SAR(Synthetic Aperture Radar) 위성 개발현황 및 향후 HRWS(High Resolution Wide Swath) SAR 위성 개발전략

  • Received : 2021.10.12
  • Accepted : 2021.11.05
  • Published : 2021.11.30

Abstract

This paper is made to suggest a future strategy for the Korean High Resolution Wide Swath Synthetic Aperture Radar (HRWS SAR) satellite development by surveying the current trends for the SAR satellite technologies. From the survey, the latest SAR technology trends are revealed of using Digital Beam-Forming (DBF), SCan-On-Receive (SCORE), Displaced Phase Center Antenna (DPCA), interferometry, and polarimetry for exploiting the SAR imagery. Based on the latest SAR technology trends and the foreign HRWS SAR development cases, the strategy for the future HRWS Korean SAR satellite development is suggested to develop the DPCA and SCORE technologies by using the KOrea Multi-Purpose SATellite-6 (KOMPSAT-6) which is going to launch in a few years, and consequently to develop the HRWS SAR satellites which can monitor the whole Earth at weekly intervals.

본 논문은 SAR 위성 기술의 현황을 조사하여 향후 우리나라 HRWS SAR (High Resolution Wide Swath Synthetic Aperture Radar) 위성을 개발하기 위한 전략을 제안하기 위해 만들어졌다. 현황조사를 통해, 최신 SAR 기술 동향은 SAR 위성 영상을 보다 적극적으로 활용하기 위해 DBF(Digital Beam-Forming), SCORE(SCan-On-REceive), DPCA(Displaced Phase Center Antenna), 간섭계, 그리고 편파 기술을 사용하는 것이라는 것을 알 수 있었다. 이와 같은 최신 SAR 기술 동향 및 해외 HRWS SAR 개발 사례를 기반으로, 수년 내로 발사가 예정된 KOMPSAT-6(KOrea Multi-Purpose SATellite-6)를 사용하여 DPCA 및 SCORE 기술을 개발하고, 결국에는 전지구를 일주일 간격으로 관측할 수 있는 HRWS SAR 위성을 개발하는 것을 향후 우리나라 HRWS SAR 위성 개발을 위한 전략으로 제안하였다.

Keywords

Acknowledgement

부족한 논문의 완성을 위해 세심한 심사를 해주신 익명의 심사위원님들께 감사드립니다.

References

  1. ESA, RADARSAT-2 (2020) [Internet], viewed 2020 Nov 26, available from: https://directory.eoportal.org/web/eoportal/satellite-missions/r/radarsat-2
  2. Kwak WG, Satellite image radar (SAR) technology trends, Korea Electromagnetic Engineering Society, Ilsan, 25 Nov 2011.
  3. ESA, SAR-Lupe (2020) [Internet], viewed 2020 Nov 26, available from: https://eoportal.org/web/eoportal/satellite-missions/s/sar-lupe/
  4. ESA, TDX(TanDEM-X) (2020) [Internet], viewed 2020 Nov 26, available from: https://directory.eoportal.org/web/eoportal/satellite-missions/t/tandem-x/
  5. ESA, KOMPSAT-5 (2020) [Internet], viewed 2020 Nov 26, available from: https://earth.esa.int/web/eoportal/satellite-missions/k/kompsat-5/
  6. ESA, ALOS-2 (2020) [Internet], viewed 2020 Nov 26, available from: https://directory.eoportal.org/web/eoportal/satellite-missions/a/alos-2/
  7. ESA, COSMO-SkyMed Second Generation (2020) [Internet], viewed 2020 Nov 26, available from: https://directory.eoportal.org/web/eoportal/satellite-missions/c-missions/cosmo-skymed-second-generation/
  8. Moreira A, Prats-Iraola P, Younis M, Krieger G, Hajnsek I, et al., A tutorial on synthetic aperture radar, IEEE Geosci. Remote Sens. Mag. 1, 6-43 (2013). https://doi.org/10.1109/MGRS.2013.2248301
  9. Curlander JC, McDonough RN, Synthetic Aperture Radar: Systems and Signal Processing (John Wiley & Sons, Hoboken, 1991).
  10. Carrara WC, Goodman RS, Majewski RM, Spotlight Synthetic Aperture Radar: Signal Processing Algorithms (Artech House, Norwood, 1995).
  11. Moreira A, Zink M, Reigber A, Neff T, Krieger G, et al., Research Results and Projects Status Report 2011-2017 (Microwaves and Radar Institute, Wessling, 2018).
  12. Petrie G, Current & future spaceborne SAR systems, in the 8th International Scientific & Technical Conference, Porec, Croati, 4 Sep 2008.
  13. Younis M, Synthetic aperture radar (SAR) principles and applications, in 6th ESA Advanced Training Course on Land Remote Sensing, Bucharest, Rumania, 14-18 Sep 2015.
  14. Meta A, Prats P, Steinbrecher U, Mittermayer J, Scheiber R, TerraSAR-X TOPSAR and ScanSAR comparison, in EUSAR Conference, Friedrichshafen, 2-5 Jul 2008.
  15. Krieger G, Advanced bistatic and multistatic SAR concepts and applications, in EUSAR Conference, Dresden, 16-18 May 2006.
  16. Krieger G, Younis M, Gebert N, Huber S, Bordoni F, et al., Advanced concepts for high-resolution wide-swath SAR imaging, in EUSAR Conference, Aachen, 7-10 Jun 2010.
  17. Costa M, Passaro A, Trends for spaceborne synthetic aperture radar for Earth-observation, in XVII Simposio de Aplicacoes Operacionais em Areas de Defesa Conference, Sao Jose dos Campos, Sep 2015.
  18. Krieger G, MIMO-SAR: opportunities and pitfalls, IEEE Trans. Geosci. Remote Sens. 52, 2628-2645 (2014). https://doi.org/10.1109/TGRS.2013.2263934
  19. Entekhabi D, Yueh S, O'Neill PE, Kellogg KH, Allen A, et al., SMAP Handbook (Jet Propulsion Laboratory, Pasadena, CA, 2014).
  20. Rosen PA, Hensley S, Joughin IR, Li FK, Madsen SN, et al., Synthetic aperture radar interferometry, Proc. IEEE. 88, 333-382 (2000). https://doi.org/10.1109/5.838084
  21. Bamler R, Hartl P, Synthetic aperture radar interferometry, Inverse Probl. 14, R1 (1998). https://doi.org/10.1088/0266-5611/14/4/001
  22. TRE ALTAMIRA, InSAR interferometric synthetic aperture radar (2021) [Internet], viewed 2021 Jan 30, available from: https://site.tre-altamira.com/
  23. Yang D, Recent trends in synthetic aperture radar (SAR) applications and technology, Curr. Ind. Technol. Trends Aerosp. 16, 127-135 (2018).
  24. Crosetto M, Monserrat O, Cuevas-Gonzalez M, Devanthery N, Crippa B, Persistent scatterer interferometry: a review, ISPRS J. Photogramm. Remote Sens. 115, 78-89 (2016). https://doi.org/10.1016/j.isprsjprs.2015.10.011
  25. Ferretti A, Fumagalli A, Novali F, Prati C, Rocca F, et al., A new algorithm for processing interferometric data-stacks: SqueeSAR, IEEE Trans. Geosci. Remote Sens. 49, 3460-3470 (2011). https://doi.org/10.1109/TGRS.2011.2124465
  26. Suchandt S, Eineder M, Muller R, Laika A, Hinz S, et al., Development of a GMTI processing system for the extraction of traffic information from TerraSAR-X data, in EUSAR Conference, Dresden, 16-18 May 2006.
  27. Bae CS, Jeon HM, Yang DH, Yang HG, Ground moving target's velocity estimation in SAR-GMTI, J. Korean Inst. Electromagn. Eng. Sci. 28, 139-146 (2017). https://doi.org/10.5515/KJKIEES.2017.28.2.139
  28. Rousseau LP, Chouinard JY, Gierull C, Performance analysis of HRWS/GMTI for space-based SAR using sparse arrays, Proceedings of the 17th International Radar Symposium (IRS), Krakow, Poland, 1-5 May 2016.
  29. Yang T, Wang Y, Li W, A moving target imaging algorithm for HRWS SAR/GMTI systems, IEEE Trans. Aerosp. Electron. Syst. 53, 1147-1157 (2017). https://doi.org/10.1109/TAES.2017.2667858
  30. Earth Observation Research Center, Polarimetric observation by PALSAR Earth Observation Research Center (2006) [Internet], viewed 2021 Nov 24, available from: https://www.eorc.jaxa.jp/ALOS/en/img_up/pal_polarization.htm
  31. Cloude SR, Papathanassiou KP, Polarimetric SAR interferometry, IEEE Trans. Geosci. Remote Sens. 36, 1551-1565 (1998). https://doi.org/10.1109/36.718859
  32. Papathanassiou KP, Cloude SR, Single-baseline polarimetric SAR interferometry, IEEE Trans. Geosci. Remote Sens. 39, 2352-2363 (2001). https://doi.org/10.1109/36.964971
  33. Heliere F, Fois F, Arcioni M, Bensi P, Fehringer M, et al., Biomass P-band SAR interferometric mission selected as 7th Earth Explorer Mission, in EUSAR Conference, Berlin, 3-5 Jun 2014.
  34. Reigber A, Moreira A, First demonstration of airborne SAR tomography using multibaseline L-band data, IEEE Trans. Geosci. Remote Sens. 38, 2142-2152 (2000). https://doi.org/ 10.1109/36.868873
  35. Fornaro G, Pauciullo A, Reale D, Zhu X, Bamler R, SAR tomography: an advanced tool for 4D spaceborne radar scanning with application to imaging and monitoring of cities and single buildings, IEEE Geosci. Remote Sens. Newsl. 2012-12, 9-17 (2012).
  36. Kim JH, Younis M, Prats-Iraola P, Gabele M, Krieger G, First spaceborne demonstration of digital beamforming for azimuth ambiguity suppression, IEEE Trans. Geosci. Remote Sens. 51, 579-590 (2013). https://doi.org/10.1109/TGRS.2012.2201947
  37. Bertl S, Lopez-Dekker P, Wollstadt S, Krieger G, Demonstration of digital beamforming in elevation for spaceborne synthetic aperture radar, in EUSAR Conference, Berlin, 3-5 Jun 2014.
  38. Kraus T, Braeutigam B, Bachmann M, Multistatic SAR imaging: first results of a four phase center experiment with TerraSAR-X and TanDEM-X, in EUSAR Conference, Hamburg, 6-9 Jun 2016.
  39. Mittermayer J, Krieger G, Bojarski A, Zonno M, Villano M, et al., A MirrorSAR case study based on the X-band High Resolution Wide Swath Satellite (HRWS), in EUSAR Conference, Leipzig, 29 Mar-1 Apr 2021.
  40. Spiridonova S, Kahle R, HRWS - an ambitious 4+satellite formation flying mission, in 18th Australian Aerospace Congress, Melbourne, 24-26 Feb 2019.
  41. Huber S, Villano M, Younis M, Krieger G, Moreira A, et al., Tandem-L: design concepts for a next-generation spaceborne SAR system, in EUSAR Conference, Hamburg, 6-9 Jun 2016.
  42. Moreira A, Bachmann M, Balzer W, Tridon DB, Diedrich E, et al., Tandem-L: project status and main findings of the phase BI study, in IGARSS 2018, Valencia, 22-27 Jul 2018.
  43. Janoth J, Jochum M, Petrat L, Knigge T, High resolution wide swath - the next generation X-band mission, in IGARSS, Yokohama, 28 Jul-2 Aug 2019.
  44. Lee S, Yoon J, Kim J, KOMPSAT-6 mission, operation concept, and system design, in EUSAR Conference, Hamburg, 6-9 Jun 2016.
  45. Villano M, Krieger G, Del Zoppo V, On-board Doppler filtering for data volume reduction in spaceborne SAR systems, IEEE Geosci. Remote Sens. Lett, 13, 1173-1177 (2016). https://doi.org/10.1109/LGRS.2016.2574886