• Title/Summary/Keyword: high resolution melting real-time PCR

Search Result 6, Processing Time 0.018 seconds

Molecular Differentiation of Schistosoma japonicum and Schistosoma mekongi by Real-Time PCR with High Resolution Melting Analysis

  • Kongklieng, Amornmas;Kaewkong, Worasak;Intapan, Pewpan M.;Sanpool, Oranuch;Janwan, Penchom;Thanchomnang, Tongjit;Lulitanond, Viraphong;Sri-Aroon, Pusadee;Limpanont, Yanin;Maleewong, Wanchai
    • Parasites, Hosts and Diseases
    • /
    • v.51 no.6
    • /
    • pp.651-656
    • /
    • 2013
  • Human schistosomiasis caused by Schistosoma japonicum and Schistosoma mekongi is a chronic and debilitating helminthic disease still prevalent in several countries of Asia. Due to morphological similarities of cercariae and eggs of these 2 species, microscopic differentiation is difficult. High resolution melting (HRM) real-time PCR is developed as an alternative tool for the detection and differentiation of these 2 species. A primer pair was designed for targeting the 18S ribosomal RNA gene to generate PCR products of 156 base pairs for both species. The melting points of S. japonicum and S. mekongi PCR products were $84.5{\pm}0.07^{\circ}C$ and $85.7{\pm}0.07^{\circ}C$, respectively. The method permits amplification from a single cercaria or an egg. The HRM real-time PCR is a rapid and simple tool for differentiation of S. japonicum and S. mekongi in the intermediate and final hosts.

Rapid Detection and Identification of Wuchereria bancrofti, Brugia malayi, B. pahangi, and Dirofilaria immitis in Mosquito Vectors and Blood Samples by High Resolution Melting Real-Time PCR

  • Thanchomnang, Tongjit;Intapan, Pewpan M.;Tantrawatpan, Chairat;Lulitanond, Viraphong;Chungpivat, Sudchit;Taweethavonsawat, Piyanan;Kaewkong, Worasak;Sanpool, Oranuch;Janwan, Penchom;Choochote, Wej;Maleewong, Wanchai
    • Parasites, Hosts and Diseases
    • /
    • v.51 no.6
    • /
    • pp.645-650
    • /
    • 2013
  • A simple, rapid, and high-throughput method for detection and identification of Wuchereria bancrofti, Brugia malayi, Brugia pahangi, and Dirofilaria immitis in mosquito vectors and blood samples was developed using a real-time PCR combined with high-resolution melting (HRM) analysis. Amplicons of the 4 filarial species were generated from 5S rRNA and spliced leader sequences by the real-time PCR and their melting temperatures were determined by the HRM method. Melting of amplicons from W. bancrofti, B. malayi, D. immitis, and B. pahangi peaked at $81.5{\pm}0.2^{\circ}C$, $79.0{\pm}0.3^{\circ}C$, $76.8{\pm}0.1^{\circ}C$, and $79.9{\pm}0.1^{\circ}C$, respectively. This assay is relatively cheap since it does not require synthesis of hybridization probes. Its sensitivity and specificity were 100%. It is a rapid and technically simple approach, and an important tool for population surveys as well as molecular xenomonitoring of parasites in vectors.

Molecular Differentiation of Opisthorchis viverrini and Clonorchis sinensis Eggs by Multiplex Real-Time PCR with High Resolution Melting Analysis

  • Kaewkong, Worasak;Intapan, Pewpan M.;Sanpool, Oranuch;Janwan, Penchom;Thanchomnang, Tongjit;Laummaunwai, Porntip;Lulitanond, Viraphong;Doanh, Pham Ngoc;Maleewong, Wanchai
    • Parasites, Hosts and Diseases
    • /
    • v.51 no.6
    • /
    • pp.689-694
    • /
    • 2013
  • Opisthorchis viverrini and Clonorchis sinensis are parasites known to be carcinogenic and causative agents of cholangiocarcinoma in Asia. The standard method for diagnosis for those parasite infections is stool examination to detect parasite eggs. However, the method has low sensitivity, and eggs of O. viverrini and C. sinensis are difficult to distinguish from each other and from those of some other trematodes. Here, we report a multiplex real-time PCR coupled with high resolution melting (HRM) analysis for the differentiation of O. viverrini and C. sinensis eggs in fecal samples. Using 2 pairs of species-specific primers, DNA sequences from a portion of the mitochondrial NADH dehydrogenase subunit 2 (nad 2) gene, were amplified to generate 209 and 165 bp products for O. viverrini and C. sinensis, respectively. The distinct characteristics of HRM patterns were analyzed, and the melting temperatures peaked at $82.4{\pm}0.09^{\circ}C$ and $85.9{\pm}0.08^{\circ}C$ for O. viverrini and C. sinensis, respectively. This technique was able to detect as few as 1 egg of O. viverrini and 2 eggs of C. sinensis in a 150 mg fecal sample, which is equivalent to 7 and 14 eggs per gram of feces, respectively. The method is species-specific, rapid, simple, and does not require fluorescent probes or post-PCR processing for discrimination of eggs of the 2 species. It offers a new tool for differentiation and detection of Asian liver fluke infections in stool specimens.

Internal Transcribed Spacer Barcoding DNA Region Coupled with High Resolution Melting Analysis for Authentication of Panax Species (DNA 바코딩과 고해상 융해곡선분석에 기반한 인삼속 식물의 종 판별)

  • Bang, Kyong Hwan;Kim, Young Chang;Lim, Ji Young;Kim, Jang Uk;Lee, Jung Woo;Kim, Dong Hwi;Kim, Kee Hong;Jo, Ick Hyun
    • Korean Journal of Medicinal Crop Science
    • /
    • v.23 no.6
    • /
    • pp.439-445
    • /
    • 2015
  • Background : Correct identification of Panax species is important to ensure food quality, safety, authenticity and health for consumers. This paper describes a high resolution melting (HRM) analysis based method using internal transcribed spacer (ITS) and 5.8S ribosomal DNA barcoding regions as target (Bar-HRM) to obtain barcoding information for the major Panax species and to identify the origin of ginseng plant. Methods and Results : A PCR-based approach, Bar-HRM was developed to discriminate among Panax species. In this study, the ITS1, ITS2, and 5.8S rDNA genes were targeted for testing, since these have been identified as suitable genes for use in the identification of Panax species. The HRM analysis generated cluster patterns that were specific and sensitive enough to detect small sequence differences among the tested Panax species. Conclusion : The results of this study show that the HRM curve analysis of the ITS regions and 5.8S rDNA sequences is a simple, quick, and reproducible method. It can simultaneously identify three Panax species and screen for variants. Thus, ITS1HRM and 5.8SHRM primer sets can be used to distinguish among Panax species.

Global DNA Methylation Patterns and Gene Expression Associated with Obesity-Susceptibility in Offspring of Pregnant Sprague-Dawley Rats Exposed to BDE-47 and BDE-209 (임신 중 BDE-47 및 BDE-209에 노출된 어미와 새끼 Sprague-Dawley 랫드의 Global DNA 메틸화 양상과 비만 감수성과 연관된 유전자 발현)

  • Park, Byeong-Min;Yoon, Ok-Jin;Lee, Do-Hoon
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.49 no.1
    • /
    • pp.28-39
    • /
    • 2017
  • Persistent organic pollutants (POPs) can affect epigenetic mechanisms and obesity development. Polybrominated diphenyl ethers (PBDEs)-widely used to make flames-are one of the important POPs. Prenatal exposure to endocrine disrupting chemicals (EDCs), such as POPs, may affect global DNA methylation in long interspersed nuclear elements (LINE-1), increasing the risk of obesity later in life. Therefore, pregnant Sprague-Dawley (SD) rats were used to elucidate whether BDE-47 and BDE-209 transferred through placenta and breast milk cause epigenetic changes in LINE-1 and increase genetic susceptibility to obesity as obesogen during the developmental periods. Global DNA methylation in LINE-1 and gene expression related to obesity were measured in dams and offspring, using a methylation-sensitive high resolution melting analysis (MS-HRM) and direct bisulfite sequencing and quantitative real time polymerase chain reaction (qPCR), respectively. The results of MS-HRM showed global DNA hypomethylation patterns in LINE-1 of exposed offspring (2 of total 4) at PND 4, but bisulfite sequencing showed no difference in both the exposed and non-exposed groups. Gene expression in dams related to ${\beta}$-oxidation pathway and those related to adipokines showed different patterns between the two groups. On the contrary, gene expressions of offspring showed a similar pattern. Gene expressions related to ${\beta}$-oxidation pathway and obesity were significantly increased when compared with 'at birth', but not $PPAR-{\alpha}$. In conclusion, this study demonstrated the possibility that co-exposure to BDE-47 and BDE-209-via the placenta and breast milk-may affect epigenetic changes and modulate gene expression levels related to obesity.

Development of a SNP marker set related to crown gall disease in grapevines by a genome wide association study

  • Kim, Dae-Gyu;Jang, Hyun A;Lim, Dong Jun;Hur, Youn Young;Lee, Kyo-Sang;Min, Jiyoung;Oh, Sang-Keun
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.3
    • /
    • pp.693-705
    • /
    • 2020
  • Grapes (Vitis spp. L.) are the third most produced fruit in the world. Crown gall disease caused by Agrobacterium vitis forms galls in the stems of the grapevines and reduces the vitality of the fruit trees, resulting in reduced yields. This pathogen has occurred in vineyards worldwide and caused serious economic losses. It is a soil-borne disease, so Agrobacterium vitis can survive for several years in vineyards and is difficult to control. Additionally, since there is no effective chemical control method, the most effective control method is the breeding of resistant varieties. To make the resistant variety, marker-assisted selection (MAS) enables fast breeding with low cost. In this study, we applied a genome-wide association study (GWAS), by combining phenotyping and genotyping-by-sequencing (GBS), for the development of a single nucleotide polymorphism (SNP) marker set related to crown gall disease using 350 grapevine varieties. As a result of the GBS based genotyping analysis, about 58,635 SNPs were obtained. In addition, the phenotypic analysis showed 35.2% resistance, 73% moderate susceptibility and 16.4% highly susceptibility. Moreover, after confirmation, two genes (VvARF4 and VvATL6-like) were shown to be related to crown gall disease based on the results of GWAS analysis, using the phenotypic data, and GBS. High-resolution melting analysis (HRMA) was performed using the Luna® Universal Probe with real-time PCR to distinguish the melting peaks of the resistant and susceptible varieties. Our data show that these SNP markers are expected to be helpful in evaluating resistance against grapevine crown gall disease and in breeding.