DOI QR코드

DOI QR Code

Molecular Differentiation of Schistosoma japonicum and Schistosoma mekongi by Real-Time PCR with High Resolution Melting Analysis

  • Kongklieng, Amornmas (Department of Parasitology, Faculty of Medicine, Khon Kaen University) ;
  • Kaewkong, Worasak (Research and Diagnostic Center for Emerging Infectious Diseases, Faculty of Medicine, Khon Kaen University) ;
  • Intapan, Pewpan M. (Department of Parasitology, Faculty of Medicine, Khon Kaen University) ;
  • Sanpool, Oranuch (Department of Parasitology, Faculty of Medicine, Khon Kaen University) ;
  • Janwan, Penchom (Department of Parasitology, Faculty of Medicine, Khon Kaen University) ;
  • Thanchomnang, Tongjit (Research and Diagnostic Center for Emerging Infectious Diseases, Faculty of Medicine, Khon Kaen University) ;
  • Lulitanond, Viraphong (Research and Diagnostic Center for Emerging Infectious Diseases, Faculty of Medicine, Khon Kaen University) ;
  • Sri-Aroon, Pusadee (Applied Malacology Center, Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University) ;
  • Limpanont, Yanin (Applied Malacology Center, Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University) ;
  • Maleewong, Wanchai (Department of Parasitology, Faculty of Medicine, Khon Kaen University)
  • Received : 2013.05.30
  • Accepted : 2013.10.11
  • Published : 2013.12.31

Abstract

Human schistosomiasis caused by Schistosoma japonicum and Schistosoma mekongi is a chronic and debilitating helminthic disease still prevalent in several countries of Asia. Due to morphological similarities of cercariae and eggs of these 2 species, microscopic differentiation is difficult. High resolution melting (HRM) real-time PCR is developed as an alternative tool for the detection and differentiation of these 2 species. A primer pair was designed for targeting the 18S ribosomal RNA gene to generate PCR products of 156 base pairs for both species. The melting points of S. japonicum and S. mekongi PCR products were $84.5{\pm}0.07^{\circ}C$ and $85.7{\pm}0.07^{\circ}C$, respectively. The method permits amplification from a single cercaria or an egg. The HRM real-time PCR is a rapid and simple tool for differentiation of S. japonicum and S. mekongi in the intermediate and final hosts.

Keywords

References

  1. World Health Organization. Report of the Scientific Working Group Meeting on Schistosomiasis. Geneva, Switzerland. 2005, p 1.
  2. Muth S, Sayasone S, Odermatt-Biays S, Phompida S, Duong S, Odermatt P. Schistosoma mekongi in Cambodia and Lao People's Democratic Republic. Adv Parasitol 2010; 72: 179-203. https://doi.org/10.1016/S0065-308X(10)72007-8
  3. Zhou XN, Bergquist R, Leonardo L, Yang GJ, Yang K, Sudomo M, Olveda R. Schistosomiasis japonica control and research needs. Adv Parasitol 2010; 72: 145-178. https://doi.org/10.1016/S0065-308X(10)72006-6
  4. Leshem E, Meltzer E, Marva E, Schwartz E. Travel-related schistosomiasis acquired in Laos. Emerg Infect Dis 2009; 15: 1823-1826. https://doi.org/10.3201/eid1511.090611
  5. Gryseels B. Schistosomiasis. Infect Dis Clin North Am 2012; 26: 383-397. https://doi.org/10.1016/j.idc.2012.03.004
  6. Qiu DC, Hubbard AE, Zhong B, Zhang Y, Spear RC. A matched, case-control study of the association between Schistosoma japonicum and liver and colon cancers, in rural China. Ann Trop Med Parasitol 2005; 99: 47-52. https://doi.org/10.1179/136485905X19883
  7. Sinuon M, Tsuyuoka R, Socheat D, Odermatt P, Ohmae H, Matsuda H, Montresor A, Palmer K. Control of Schistosoma mekongi in Cambodia: results of eight years of control activities in the two endemic provinces. Trans R Soc Trop Med Hyg 2007; 101: 34-39. https://doi.org/10.1016/j.trstmh.2006.04.011
  8. Pontes LA, Dias-Neto E, Rabello A. Detection by polymerase chain reaction of Schistosoma mansoni DNA in human serum and feces. Am J Trop Med Hyg 2002; 66: 157-162.
  9. Pontes LA, Oliveira MC, Katz N, Dias-Neto E, Rabello A. Comparison of a polymerase chain reaction and the Kato-Katz technique for diagnosing infection with Schistosoma mansoni. Am J Trop Med Hyg 2003; 68: 652-656.
  10. Gobert GN, Chai M, Duke M, McManus DP. Copro-PCR based detection of Schistosoma eggs using mitochondrial DNA markers. Mol Cell Probes 2005; 19: 250-254. https://doi.org/10.1016/j.mcp.2005.01.006
  11. Xu J, Liu AP, Guo JJ, Wang B, Qiu SJ, Sun H, Guan W, Zhu XQ, Xia CM, Wu ZD. The sources and metabolic dynamics of Schistosoma japonicum DNA in serum of the host. Parasitol Res 2013; 112: 129-133. https://doi.org/10.1007/s00436-012-3115-3
  12. Hussein HM, El-Tonsy MM, Tawfik RA, Ahmed SA. Experimental study for early diagnosis of prepatent schistosomiasis mansoni by detection of free circulating DNA in serum. Parasitol Res 2012; 111: 475-478. https://doi.org/10.1007/s00436-012-2822-0
  13. Sandoval N, Siles-Lucas M, Perez-Arellano JL, Carranza C, Puente S, Lopez-Aban J, Muro A. A new PCR-based approach for the specific amplification of DNA from different Schistosoma species applicable to human urine samples. Parasitol 2006; 133: 581-587. https://doi.org/10.1017/S0031182006000898
  14. Hamburger J, Weil M, Pollack Y. Detection of Schistosoma mansoni DNA in extracts of whole individual snails by dot hybridization. Parasitol Res 1987; 74: 97-100. https://doi.org/10.1007/BF00534940
  15. Lier T, Simonsen GS, Haaheim H, Hjelmevoll SO, Vennervald BJ, Johansen MV. Novel real-time PCR for detection of Schistosoma japonicum in stool. Southeast Asian J Trop Med Public Health 2006; 37: 257-264.
  16. Lier T, Johansen MV, Hjelmevoll SO, Vennervald BJ, Simonsen GS. Real-time PCR for detection of low intensity Schistosoma japonicum infections in a pig model. Acta Trop 2008; 105: 74-80. https://doi.org/10.1016/j.actatropica.2007.10.004
  17. Lier T, Simonsen GS, Wang T, Lu D, Haukland HH, Vennervald BJ, Hegstad J, Johansen MV. Real-time polymerase chain reaction for detection of low-intensity Schistosoma japonicum infections in China. Am J Trop Med Hyg 2009; 81: 428-432.
  18. Hung YW, Remais J. Quantitative detection of Schistosoma japonicum cercariae in water by real-time PCR. PLoS Negl Trop Dis 2008; 2: e337. https://doi.org/10.1371/journal.pntd.0000337
  19. Thanchomnang T, Intapan P, Sri-Aroon P, Lulitanond V, Janwan P, Sanpool O, Maleewong W. Molecular detection of Schistosoma japonicum in infected snails and mouse faeces using a real-time PCR assay with FRET hybridisation probes. Mem Inst Oswaldo Cruz 2011; 106: 831-836. https://doi.org/10.1590/S0074-02762011000700008
  20. Sanpool O, Intapan PM, Thanchomnang T, Sri-Aroon P, Lulitanond V, Sadaow L, Maleewong W. Development of a real-time PCR assay with fluorophore-labelled hybridization probes for detection of Schistosoma mekongi in infected snails and rat feces. Parasitol 2012; 139: 1266-1272. https://doi.org/10.1017/S0031182012000649
  21. Gomes AL, Melo FL, Werkhauser RP, Abath FG. Development of a real time polymerase chain reaction for quantitation of Schistosoma mansoni DNA. Mem Inst Oswaldo Cruz 2006; 101(suppl): 133-136.
  22. ten Hove RJ, Verweij JJ, Vereecken K, Polman K, Dieye L, van Lieshout L. Multiplex real-time PCR for the detection and quantification of Schistosoma mansoni and S. haematobium infection in stool samples collected in northern Senegal. Trans R Soc Trop Med Hyg 2008; 102: 179-185. https://doi.org/10.1016/j.trstmh.2007.10.011
  23. Kjetland EF, Hove RJ, Gomo E, Midzi N, Gwanzura L, Mason P, Friis H, Verweij JJ, Gundersen SG, Ndhlovu PD, Mduluza T, Van Lieshout L. Schistosomiasis PCR in vaginal lavage as an indicator of genital Schistosoma haematobium infection in rural Zimbabwean women. Am J Trop Med Hyg 2009; 81: 1050-1055. https://doi.org/10.4269/ajtmh.2009.09-0081
  24. Thanchomnang T, Tantrawatpan C, Intapan PM, Sri-Aroon P, Limpanont Y, Lulitanond V, Janwan P, Sanpool O, Tourtip S, Maleewong W. Pyrosequencing for rapid molecular identification of Schistosoma japonicum and S. mekongi eggs and cercariae. Exp Parasitol 2013; 135: 148-152. https://doi.org/10.1016/j.exppara.2013.06.013
  25. Galen RS. Predictive value and efficiency of laboratory testing. Pediatr Clin North Am 1980; 27: 861-869.
  26. Wittwer CT, Reed GH, Gundry CN, Vandersteen JG, Pryor RJ. High-resolution genotyping by amplicon melting analysis using LCGreen. Clin Chem 2003; 49: 853-860. https://doi.org/10.1373/49.6.853
  27. Wongkamchai S, Monkong N, Mahannol P, Taweethavonsawat P, Loymak S, Foongladda S. Rapid detection and identification of Brugia malayi, B. pahangi, and Dirofilaria immitis by high-resolution melting assay. Vector Borne Zoonotic Dis 2013; 13: 31-36. https://doi.org/10.1089/vbz.2012.0971
  28. Ngui R, Lim YA, Chua KH. Rapid detection and identification of human hookworm infections through high resolution melting (HRM) analysis. PLoS One 2012; 7: e41996. https://doi.org/10.1371/journal.pone.0041996
  29. Zhou L, Tang J, Zhao Y, Gong R, Lu X, Gong L, Wang Y. A highly sensitive TaqMan real-time PCR assay for early detection of Schistosoma species. Acta Trop 2011; 120: 88-94. https://doi.org/10.1016/j.actatropica.2011.06.006

Cited by

  1. Detection of Schistosoma mansoni and Schistosoma haematobium by Real-Time PCR with High Resolution Melting Analysis vol.16, pp.7, 2013, https://doi.org/10.3390/ijms160716085
  2. Rapid detection and identification of four major Schistosoma species by high-resolution melt (HRM) analysis vol.114, pp.11, 2013, https://doi.org/10.1007/s00436-015-4660-3
  3. Molecular characterization and functional analysis of the Schistosoma mekongi Ca2+-dependent cysteine protease (calpain) vol.12, pp.1, 2013, https://doi.org/10.1186/s13071-019-3639-9
  4. Establishment and application of a novel fluorescence-based analytical method for the rapid detection of viable bacteria in different samples vol.12, pp.31, 2013, https://doi.org/10.1039/d0ay01247e
  5. Development of a novel real-time polymerase chain reaction assay for the sensitive detection of Schistosoma japonicum in human stool vol.15, pp.10, 2013, https://doi.org/10.1371/journal.pntd.0009877