DOI QR코드

DOI QR Code

Global DNA Methylation Patterns and Gene Expression Associated with Obesity-Susceptibility in Offspring of Pregnant Sprague-Dawley Rats Exposed to BDE-47 and BDE-209

임신 중 BDE-47 및 BDE-209에 노출된 어미와 새끼 Sprague-Dawley 랫드의 Global DNA 메틸화 양상과 비만 감수성과 연관된 유전자 발현

  • Park, Byeong-Min (Department of Laboratory Medicine, Research Institute and Hospital, National Cancer Center) ;
  • Yoon, Ok-Jin (Department of Laboratory Medicine, Research Institute and Hospital, National Cancer Center) ;
  • Lee, Do-Hoon (Department of Laboratory Medicine, Research Institute and Hospital, National Cancer Center)
  • 박병민 (국립암센터 진단검사의학과) ;
  • 윤옥진 (국립암센터 진단검사의학과) ;
  • 이도훈 (국립암센터 진단검사의학과)
  • Received : 2016.12.27
  • Accepted : 2017.02.14
  • Published : 2017.03.31

Abstract

Persistent organic pollutants (POPs) can affect epigenetic mechanisms and obesity development. Polybrominated diphenyl ethers (PBDEs)-widely used to make flames-are one of the important POPs. Prenatal exposure to endocrine disrupting chemicals (EDCs), such as POPs, may affect global DNA methylation in long interspersed nuclear elements (LINE-1), increasing the risk of obesity later in life. Therefore, pregnant Sprague-Dawley (SD) rats were used to elucidate whether BDE-47 and BDE-209 transferred through placenta and breast milk cause epigenetic changes in LINE-1 and increase genetic susceptibility to obesity as obesogen during the developmental periods. Global DNA methylation in LINE-1 and gene expression related to obesity were measured in dams and offspring, using a methylation-sensitive high resolution melting analysis (MS-HRM) and direct bisulfite sequencing and quantitative real time polymerase chain reaction (qPCR), respectively. The results of MS-HRM showed global DNA hypomethylation patterns in LINE-1 of exposed offspring (2 of total 4) at PND 4, but bisulfite sequencing showed no difference in both the exposed and non-exposed groups. Gene expression in dams related to ${\beta}$-oxidation pathway and those related to adipokines showed different patterns between the two groups. On the contrary, gene expressions of offspring showed a similar pattern. Gene expressions related to ${\beta}$-oxidation pathway and obesity were significantly increased when compared with 'at birth', but not $PPAR-{\alpha}$. In conclusion, this study demonstrated the possibility that co-exposure to BDE-47 and BDE-209-via the placenta and breast milk-may affect epigenetic changes and modulate gene expression levels related to obesity.

잔류성 유기 오염 물질은 후성학적 메커니즘과 비만의 발달에 영향을 줄 수가 있다. 폴리브롬화 디페닐 에테르는 주요한 잔류성 유기 오염 물질 중 하나이며, 난연제로 널리 쓰인다. 출생전 잔류성 유기 오염 물질과 같은 내분비교란물질에 노출시 LINE-1 (long interspersed nuclear elements)의 global DNA 메틸화와 비만 위험도의 증가에 영향을 미칠 수 있다. 따라서, 이번 연구는 임신한 스프라그-돌리 백서를 이용하여 태반과 모유를 통하여 전달된 BDE-47, BDE-209가 LINE-1에서의 후성학적인 변화와 obesogen으로서 발달과정에 따른 유전적 비만 감수성의 증가에 영향을 줄 수 있는지에 대해서 보고자 하였다. 어미와 새끼에서 LINE-1의 광범위 DNA 메틸화와 비만과 관련된 유전자 발현은 methylation-sensitive high resolution melting analysis (MS-HRM), direct bisulfite sequencing와 quantitative real time polymerase chain reaction (qPCR)을 사용하여 각각 분석하였다. MS-HRM 결과는 출생 후 4일의 노출군 새끼에서 (4마리 중 2마리) LINE-1의 광범위 DNA 저메틸화 양상을 보여주었지만, bisulfite sequencing은 노출군과 비노출군에서 차이가 없었다. ${\beta}$-산화 경로와 adipokines과 관련된 어미의 유전자 발현은 두 그룹간 차이를 보였다. 반면에, 새끼의 유전자 발현은 비슷한 양상을 나타내었다. ${\beta}$-산화 경로와 비만과 관련된 유전자 발현 중 $PPAR-{\alpha}$를 제외하고는 출생 시에 유의하게 증가하였다. 결론적으로, 이번 연구는 BDE-47, BDE-209의 동시 노출이 태반과 모유를 통해서 새끼에서의 후성학적인 변화와 비만과 관련된 유전자 발현 변화에 영향을 미칠 수 있는 것을 보여주었다.

Keywords

References

  1. Schell LM, Gallo MV, Denham M, Ravenscroft J. Effects of pollution on human growth and development: an introduction. J Physiol Anthropol. 2006;25(1):103-112. https://doi.org/10.2114/jpa2.25.103
  2. Jaraczewska K, Lulek J, Covaci A, Voorspoels S, Kaluba-Skotarczak A, Drews K, et al. Distribution of polychlorinated biphenyls, organochlorine pesticides and polybrominated diphenyl ethers in human umbilical cord serum, maternal serum and milk from Wielkopolska region, Poland. Sci Total Environ. 2006;372(1):20-31. https://doi.org/10.1016/j.scitotenv.2006.03.030
  3. Stapleton HM, Klosterhaus S, Keller A, Ferguson PL, van Bergen S, Cooper E, et al. Identification of flame retardants in polyurethane foam collected from baby products. Environ Sci Technol. 2011;45(12):5323-5231. https://doi.org/10.1021/es2007462
  4. Costa LG, Giordano G, Tagliaferri S, Caglieri A, Mutti A. Polybrominated diphenyl ether (PBDE) flame retardants: environmental contamination, human body burden and potential adverse health effects. Acta Biomed : Atenei Parmensis. 2008;79(3):172-183.
  5. Aschebrook-Kilfoy B, DellaValle CT, Purdue M, Kim C, Zhang Y, Sjodin A, et al. Polybrominated diphenyl ethers and thyroid cancer risk in the prostate, colorectal, lung, and ovarian cancer screening trial cohort. Am J Epidemiol. 2015;181(11):883-888. https://doi.org/10.1093/aje/kwu358
  6. Schug TT, Janesick A, Blumberg B, Heindel JJ. Endocrine disrupting chemicals and disease susceptibility. J Steroid Biochem Mol Biol. 2011;127(3-5):204-215. https://doi.org/10.1016/j.jsbmb.2011.08.007
  7. Tang-Peronard JL, Andersen HR, Jensen TK, Heitmann BL. Endocrine-disrupting chemicals and obesity development in humans: a review. Obes Rev. 2011;12(8):622-636. https://doi.org/10.1111/j.1467-789X.2011.00871.x
  8. Romano ME, Savitz DA, Braun JM. Challenges and future directions to evaluating the association between prenatal exposure to endocrine disrupting chemicals and childhood obesity. Curr Epidemiol Rep. 2014;1(2):57-66. https://doi.org/10.1007/s40471-014-0007-3
  9. Janesick A, Blumberg B. Obesogens, stem cells and the developmental programming of obesity. Int J Androl. 2012;35(3):437-448. https://doi.org/10.1111/j.1365-2605.2012.01247.x
  10. Jin B, Li Y, Robertson KD. DNA methylation: superior or subordinate in the epigenetic hierarchy? Genes Cancer. 2011;2(6):607-617. https://doi.org/10.1177/1947601910393957
  11. Herrera BM, Keildson S, Lindgren CM. Genetics and epigenetics of obesity. Maturitas. 2011;69(1):41-9. https://doi.org/10.1016/j.maturitas.2011.02.018
  12. Beck CR, Garcia-Perez JL, Badge RM, Moran JV. LINE-1 elements in structural variation and disease. Annu Rev Genomics Hum Genet. 2011;12:187-215. https://doi.org/10.1146/annurev-genom-082509-141802
  13. An W, Dai L, Niewiadomska AM, Yetil A, O'Donnell KA, Han JS, et al. Characterization of a synthetic human LINE-1 retrotransposon ORFeus-Hs. Mob DNA. 2011;2(1):2. https://doi.org/10.1186/1759-8753-2-2
  14. Ostertag EM, Kazazian HH, Jr. Biology of mammalian L1 retrotransposons. Annu Rev Genet. 2001;35(1):501-538. https://doi.org/10.1146/annurev.genet.35.102401.091032
  15. Inamura K, Yamauchi M, Nishihara R, Lochhead P, Qian ZR, Kuchiba A, et al. Tumor LINE-1 methylation level and microsatellite instability in relation to colorectal cancer prognosis. J Natl Cancer Inst. 2014;106(9). pii: dju195. doi: 10.1093/jnci/dju195.
  16. Martin SL. The ORF1 protein encoded by LINE-1: structure and function during L1 retrotransposition. J Biomed Biotechnol. 2006;2006(1):45621.
  17. Byun HM, Benachour N, Zalko D, Frisardi MC, Colicino E, Takser L, et al. Epigenetic effects of low perinatal doses of flame retardant BDE-47 on mitochondrial and nuclear genes in rat offspring. Toxicology. 2015;328:152-159. https://doi.org/10.1016/j.tox.2014.12.019
  18. Wojdacz TK, Moller TH, Thestrup BB, Kristensen LS, Hansen LL. Limitations and advantages of MS-HRM and bisulfite sequencing for single locus methylation studies. Expert Rev Mol Diagn. 2010;10(5):575-580. https://doi.org/10.1586/erm.10.46
  19. Welshons WV, Thayer KA, Judy BM, Taylor JA, Curran EM, vom Saal FS. Large Effects from Small Exposures. I. Mechanisms for Endocrine-Disrupting Chemicals with Estrogenic Activity. Environ Health Perspect. 2003;111(8):994-1006. https://doi.org/10.1289/ehp.5494
  20. Lee DH. Endocrine disrupting chemicals and environmental diseases. J Korean Med Assoc. 2012;55(3):243-249. https://doi.org/10.5124/jkma.2012.55.3.243
  21. Kersten S, Desvergne B, Wahli W. Roles of PPARs in health and disease. Nature. 2000;405(6785):421-424. https://doi.org/10.1038/35013000
  22. Tugwood JD, Issemann I, Anderson RG, Bundell KR, Mcpheat WL, Green S. The mouse peroxisome proliferator activated receptor recognizes a response element in the 5' flanking sequence of the rat acyl coa oxidase gene. Embo J. 1992;11(2):433-439. https://doi.org/10.1002/j.1460-2075.1992.tb05072.x
  23. Rosen ED, Sarraf P, Troy AE, Bradwin G, Moore K, Milstone DS, et al. PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro. Mol Cell. 1999;4(4):611-617. https://doi.org/10.1016/S1097-2765(00)80211-7
  24. Memon RA, Tecott LH, Nonogaki K, Beigneux A, Moser AH, Grunfeld C, et al. Up-regulation of peroxisome proliferatoractivated receptors (PPAR-alpha) and PPAR-gamma messenger ribonucleic acid expression in the liver in murine obesity: troglitazone induces expression of PPAR-gamma-responsive adipose tissue-specific genes in the liver of obese diabetic mice. Endocrinology. 2000;141(11):4021-4031. https://doi.org/10.1210/endo.141.11.7771
  25. Peraldi P, Spiegelman B. TNF-${\alpha}$ and insulin resistance: summary and future prospects. Mol Cell Biochem. 1998;182(1-2):169-175. https://doi.org/10.1023/A:1006865715292
  26. Ogai K, Matsumoto M, Aoki M, Minematsu T, Kitamura KI, Kobayashi M, et al. Increased level of tumor necrosis factor-alpha (TNF-alpha) on the skin of Japanese obese males: measured by quantitative skin blotting. Int J Cosmet Sci. 2016;38:462-469. https://doi.org/10.1111/ics.12312
  27. Gelinas DS, McLaurin J. PPAR-alpha expression inversely correlates with inflammatory cytokines IL-1beta and TNF-alpha in aging rats. Neurochem Res. 2005;30(11):1369-1375. https://doi.org/10.1007/s11064-005-8341-y
  28. Beier K, Volkl A, Fahimi HD. TNF-${\alpha}$ downregulates the peroxisome proliferator activated receptor-${\alpha}$ and the mRNAs encoding peroxisomal proteins in rat liver. FEBS Lett. 1997;412(2):385-387. https://doi.org/10.1016/S0014-5793(97)00805-3
  29. Kern PA, Di Gregorio GB, Lu T, Rassouli N, Ranganathan G. Adiponectin expression from human adipose tissue: relation to obesity, insulin resistance, and tumor necrosis factor-alpha expression. Diabetes. 2003;52(7):1779-1785. https://doi.org/10.2337/diabetes.52.7.1779
  30. Yan WJ, Wu J, Mo J, Huang CW, Peng LW, Xu L. Plasma levels of adiponectin and tumor necrosis factor-alpha in children with obesity. Zhongguo dang dai er ke za zhi = Chinese journal of contemporary pediatrics. 2009;11(1):47-50.
  31. Balistreri CR, Caruso C, Candore G. The role of adipose tissue and adipokines in obesity-related inflammatory diseases. Mediators Inflamm. 2010;2010:802078.
  32. Dolinoy DC, Huang D, Jirtle RL. Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc Natl Acad Sci USA. 2007;104(32):13056-13061. https://doi.org/10.1073/pnas.0703739104
  33. Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13(7):484-492. https://doi.org/10.1038/nrg3230
  34. Kamstra JH, Hruba E, Blumberg B, Janesick A, Mandrup S, Hamers T, et al. Transcriptional and epigenetic mechanisms underlying enhanced in vitro adipocyte differentiation by the brominated flame retardant BDE-47. Environ Sci Techno. 2014;48(7):4110-4119. https://doi.org/10.1021/es405524b
  35. Dao T, Hong X, Wang X, Tang WY. Aberrant 5'-CpG methylation of cord blood TNF alpha associated with maternal exposure to polybrominated diphenyl ethers. PloS one. 2015;10(9):e0138815. https://doi.org/10.1371/journal.pone.0138815
  36. Kim AY, Park YJ, Pan X, Shin KC, Kwak SH, Bassas AF, et al. Obesity-induced DNA hypermethylation of the adiponectin gene mediates insulin resistance. Nat Commun. 2015;6:7585. https://doi.org/10.1038/ncomms8585
  37. Skinner MK. Environmental epigenetic transgenerational inheritance and somatic epigenetic mitotic stability. Epigenetics. 2011;6(7):838-842. https://doi.org/10.4161/epi.6.7.16537
  38. Buiting K, Gross S, Lich C, Gillessen-Kaesbach G, el-Maarri O, Horsthemke B. Epimutations in Prader-Willi and Angelman syndromes: a molecular study of 136 patients with an imprinting defect. Am J Hum Genet. 2003;72(3):571-577. https://doi.org/10.1086/367926
  39. Perera F, Herbstman J. Prenatal environmental exposures, epigenetics, and disease. Reprod Toxicol. 2011;31(3):363-373. https://doi.org/10.1016/j.reprotox.2010.12.055
  40. Waterland RA, Michels KB. Epigenetic epidemiology of the developmental origins hypothesis. Annu Rev Nutr. 2007;27:363-388. https://doi.org/10.1146/annurev.nutr.27.061406.093705

Cited by

  1. In utero exposure to endocrine-disrupting chemicals, maternal factors and alterations in the epigenetic landscape underlying later-life health effects vol.89, pp.None, 2022, https://doi.org/10.1016/j.etap.2021.103779