• Title/Summary/Keyword: high purity silica

Search Result 73, Processing Time 0.021 seconds

Study of Fabrication and Improvement of Mechanical Properties of Mg-based Inorganic Fiber using Reflux Process and Silica Coating

  • Yu, Ri;Kim, YooJin
    • Journal of Powder Materials
    • /
    • v.26 no.3
    • /
    • pp.195-200
    • /
    • 2019
  • Whisker-type magnesium hydroxide sulfate hydrate ($5Mg(OH)_2{\cdot}MgSO_4{\cdot}3H_2O$, abbreviated 513 MHSH), is used in filler and flame-retardant composites based on its hydrate phase and its ability to undergo endothermic dehydration in fire conditions, respectively. In general, the length of whiskers is determined according to various synthetic conditions in a hydrothermal reaction with high temperature (${\sim}180^{\circ}C$). In this work, high-quality 513 MHSH whiskers are synthesized by controlling the concentration of the raw material in ambient conditions without high pressure. Particularly, the concentration of the starting material is closely related to the length, width, and purity of MHSH. In addition, a ceramic-coating system is adopted to enhance the mechanical properties and thermal stability of the MHSH whiskers. The physical properties of the silica-coated MHSH are characterized by an abrasion test, thermogravimetric analysis, and transmission electron microscopy.

Studies on the Synthesis of High Purity and Fine Mullite Powder (I) (고순도 초미립자 물라이트 분말 합성에 대한 연구 (I))

  • 김경용;김윤호;김병호;이동주
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.5
    • /
    • pp.682-690
    • /
    • 1989
  • Fine mullite powder was prepared by colloidal sol-gel route. Boehmite as a starting material of Al2O3 and silica sol or fumed silica as a starting material of SiO2 were used. $\alpha$-Al2O3, TiO2 and ZrO2 were used as seeding materials. The combination of boehmite and silica was found to be the stoichiometric mullite powder. Techniques for drying used were spray drying, freeze drying, reduced pressure evaporation and drying in a oven. The gelled powder was heated at 130$0^{\circ}C$ for 100min and was attrition-milled for 1~3hrs. The mullite powder obtained was composed of submicrometer, uniform and spherical particles with a narrow size distribution. The mullite powder was characterized by BET, SEM, XRD and IR spectroscopy.

  • PDF

Silica Sulfuric Acid/HNO3 as a Novel Heterogeneous System for the Nitrolysis of DADN to HMX under Mild Conditions

  • Bayat, Yadollah;Mostafavi, Mohammad Mahdi Ahari
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3551-3553
    • /
    • 2012
  • 1,5-Diacetyl-3,7-dinitro-l,3,5,7-tetraazacyclooctane (DADN) is a key intermediate in the preparation of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), one of the most powerful high-melting explosives. The present investigation focuses on nitrolysis of DADN to HMX by developing a new nitrolysis process involving the use of nitric acid catalyzed by Silica Sulfuric Acid (SSA). In order to optimize the process parameters for synthesis of HMX to obtain higher yield and purity, a study was carried out with variation of some parametric conditions like time, mole ratio of SSA and nitric. This method gave us green and mild conditions for nitration reaction.

A Studyon Synthesis of High Purity $\beta$-SiC Fine Particles from Ethyl Silicate(II) (Powder Properties, Reaction Type and Activation Energy) (Ethyl Silicate를 이용한 고순도 $\beta$-SiC미분말 합성에 관한 연구(II) (분말의 특성, 반응형식 및 활성화에너지))

  • 최용식;박금철
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.2
    • /
    • pp.195-200
    • /
    • 1989
  • The Silica-Carbon mixture was made with addition of carbon black in the composition which monodispersed spherical fine silica was formed by the hydrolysis of ethylsilicate, mole ratio of Carbon/Alkoxide was 3.1 and $\beta$-SiC powder was synthesized by reacting this mixture at 1,350~1,50$0^{\circ}C$ in Ar atmosphere. The results of this study are as follow : (1) The purity of synthesized $\beta$-SiC powder was above 99.98% and it was in cubic modification with lattice constant of 4.3476$\AA$. (2) The rate-controlling steps varied with the reaction temperature for the syntehsis of $\beta$-SiC in this study ; nucleation and growth of $\beta$-SiC at 1,350~1,40$0^{\circ}C$, interfacial reaction at 1,45$0^{\circ}C$ and diffusion described by Jander Equation at 1,50$0^{\circ}C$. (3) When the rate-determining step was nucleation and growth, the activation energy was about 87.8kcal/mol.

  • PDF

Chiral Purity Test of Bevantolol by Capillaryelectrophoresis and High Performance Liquid Chromatography

  • Long, Pham Hai;Trung, Tran Quoc;Oh, Joung-Won;Kim, Kyeong-Ho
    • Archives of Pharmacal Research
    • /
    • v.29 no.9
    • /
    • pp.808-813
    • /
    • 2006
  • Two methods for the chiral purity determination of bevantolol were developed, namely capillary electrophoresis (CE) using carboxymethyl-${\beta}$-cyclodextrin (CM-${\beta}$-CD) as a chiral selector and high-perfomance liquid chromatography (HPLC) using a chiral stationary phase. In the HPLC method, the separation of bevantolol enantiomers was performed on a Chiralpak AD-H column by isocratic elution with n-hexane-ethanol-diethylamine (10:90:0.1, v/v/v) as mobile phase. In the CE method, bevantolol enantiomers were separated on an uncoated fused silica capillary with 50 mM amonium phosphate dibasic adjusted to a pH 6.5 with phosphoric acid containing 15 mM CM-${\beta}$-CD as running buffer. Validation data such as linearity, recovery, detection limit, and precision of the two methods are presented. The detection limits of S-(-)-bevantolol were 0.1% and 0.05% for CE and HPLC method, respectively and R-(+)-bevantolol were 0.15% and 0.05% for CE and HPLC method, respectively. There was generally good agreement between the HPLC and CE results.

Preparation of High-grade Silica Sand for Metallurgical-grade Si Using a Physical Beneficiation (금속급 실리콘용 고순도 규사 제조를 위한 물리적 정제 특성)

  • Yang, Young-Cheol;Jeong, Soo-Bok;Chae, Young-Bae;Kim, Seong
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.191-197
    • /
    • 2009
  • It is very important to raise the purity of silica for manufacturing metallurgical-grade silicon because the purification of silicon in the smelting process is very difficult. In present study, the silica sand which is obtained from Vietnam was mineralogically analyzed. Based on the results, a novel process to separate impurities from the silica sand was developed, which consisted of classification, specific gravity and magnetic separation steps. Using the developed process, high-grade silica sand concentrate containing over 99.8 wt% $SiO_2$ was prepared, being suitable for manufacturing the metallurgical-grade silicon.

Design of Mesoporous Silica at Low Acid Concentrations in Triblock Copolymer-Butanol-Water Systems

  • Kleitz, Freddy;Kim, Tae-Wan;Ryoo, Ryong
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.11
    • /
    • pp.1653-1668
    • /
    • 2005
  • Assembly of hybrid mesophases through the combination of amphiphilic block copolymers, acting as structuredirecting agents, and silicon sources using low acid catalyst concentration regimes is a versatile strategy to produce large quantities of high-quality ordered large-pore mesoporous silicas in a very reproducible manner. Controlling structural and textural properties is proven to be straightforward at low HCl concentrations with the adjustment of synthesis gel composition and the option of adding co-structure-directing molecules. In this account, we illustrate how various types of large-pore mesoporous silica can easily be prepared in high phase purity with tailored pore dimensions and tailored level of framework interconnectivity. Silica mesophases with two-dimensional hexagonal (p6mm) and three-dimensional cubi (Fm$\overline{3}$m, Im$\overline{3}$m and Ia$\overline{3}$d) symmetries are generated in aqueous solution by employing HCl concentrations in the range of 0.1−0.5 M and polyalkylene oxide-based triblock copolymers such as Pluronic P123 $(EO_{20}-PO_{70}-EO_{20})$ and Pluronic F127 $(EO_{106}-PO_{70}-EO_{106})$. Characterizations by powder X-ray diffraction, nitrogen physisorption, and transmission electron microscopy show that the mesoporous materials all possess high specific surface areas, high pore volumes and readily tunable pore diameters in narrow distribution of sizes ranging from 4 to 12 nm. Furthermore, we discuss our recent advances achieved in order to extend widely the phase domains in which single mesostructures are formed. Emphasis is put on the first synthetic product phase diagrams obtained in $SiO_2$-triblock copolymer-BuOH-$H_2O$ systems, with tuning amounts of butanol and silica source correspondingly. It is expected that the extended phase domains will allow designed synthesis of mesoporous silicas with targeted characteristics, offering vast prospects for future applications.

ISOTOPIC-SPECTRAL DETERMINATION OF CARBON IN HIGH PURITY INORGANIC MATERIALS

  • Lee, V.N.;Nemets, V.M.
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.477-480
    • /
    • 1995
  • Isotopic-spectral method [I] was applicated for determination of carbon in silicate materials (pure silica, guartz glasses, geological probs etc.). Isotopic heterogeneous balancing of carbon in gaseous phase and solid samples was carried out at the temperature of $1500-1900^{\circ}K$. Spectroscopic measuring of isotope concentration in a balanced gas was made using the electron-vibrational band heads of CO molecules excited in HF discharge. Limits of detection of carbon concentrations appear to be $n^*10^{-6}$.

  • PDF

Separation Technology of Pure Zirconia from Zirconsand by the Ar-H2 Arc Plasma Fusion and Sulfuric Acid Leaching with Microwave Irradiation (Ar-H2플라즈마 건식제련과 마이크로웨이브침출을 통한 지르콘샌드로부터 고순도 지르코니아 분리)

  • Lee, Jeong-Han;Hong, Sung-Kil
    • Resources Recycling
    • /
    • v.25 no.3
    • /
    • pp.49-54
    • /
    • 2016
  • In this study, zircon sand is separated into zirconia and silica by using the Ar-$H_2$ arc plasma refining. And then silica is removed from it by the microwave leaching method to produce a high pure zirconia. Plasma melting consist of two sequential processes; reduction process with Ar gas only followed by refining process with Ar-$H_2$ gas. After cooling in chamber. The solid phase obtained at $240^{\circ}C$ were found to be composed of 20% sulfuric acid solution. The solution was used as a leaching solution with microwave irradiation to obtain a high purity zirconia.