• Title/Summary/Keyword: high power property

Search Result 500, Processing Time 0.024 seconds

Operation Availability Analysis Model Development for High Altitude Long Endurance Solar Powered UAV (고고도 장기체공 태양광 무인기의 운용 가용성 분석 모델 연구)

  • Bong, Jae-Hwan;Jeong, Seong-Kyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.3
    • /
    • pp.433-440
    • /
    • 2022
  • High Altitude Long Endurance(HALE) solar powered UAV is the vehicle that flies for a long time as solar power energy sources. It can be used to replace satellites or provide continuous service because it can perform long-term missions at high altitudes. Due to the property of the mission, it is very important for HALE solar powered UAV to have maximum flight time. It is required for mission performance to fly at high altitudes continuously except a return for temporary maintenance. Therefore mission availability time analysis is a critical factor in the commercialization of HALE solar powered UAV. In this paper, we presented an analytic model and logic for available time analysis based on the design parameters of HALE solar powered UAV. This model can be used to analyze the possibility of applying UAV according to the UAV's mission in concept design before the UAV detail design stage.

A Study on Applicability of SP Creep Testing for Measurement of Creep Properties of Zr-2.5Nb Alloy (Zr-2.5Nb 합금의 크리프 물성 측정을 위한 SP 크리프 시험의 적용성에 대한 연구)

  • Park, Tae-Gyu;Ma, Young-Wha;Jeong, Ill-Seok;Yoon, Kee-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.1
    • /
    • pp.94-101
    • /
    • 2003
  • The pressure tubes made of cold-worked Zr-2.5Nb alloy are subjected to creep deformation during service period resulting in changes to their geometry such as longitudinal elongation, diameter increase and sagging. To evaluate integrity of them, information on the material creep property of the serviced tubes is essential. As one of the methods with which the creep property is directly measured from the serviced components, small punch(SP) creep testing has been considered as a substitute for the conventional uniaxial creep testing. In this study, applicability of the SP creep testing to Zr-2.5Nb pressure tube alloy was studied particularly by measuring the power law creep constants, A, n. The SP creep test has been successfully applied fur other high temperature materials which have isotropic behavior. Since the Zr-2.5Nb alloy has anisotropic property, applicability of the SP creep testing can be limited. Uniaxial creep tests and small punch creep tests were conducted with Zr-2.5Nb pressure tube alloy along with finite element analyses. Creep constants obtained by each test method are compared. It was argued that the SP creep test result gave results reflecting material properties of both directions. But the equations derived in the previous study for isotropic materials need to be modified. Discussions were made fur future research directions for application of the SP creep testing to Zr-2.5Nb tube alloy.

Development of Sound Frequency Analyser using an Ultra-Low Power MCU (초저전력 Micro Controller Unit(MCU)를 활용한 소리 주파수 분석기 개발)

  • Choi, Jae-Hoon;Chung, Yong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.4
    • /
    • pp.403-410
    • /
    • 2016
  • Materials made of metals have their own manifest resonant frequencies. Using this property, the quality test of products from the factory can be performed. An impact is applied to the product and the frequencies of the sound and/or vibration are measured using high-end equipments. They use a general purpose computer or a DSP(: Digital Signal Processor)-based stand-alone system which is usually too large in-size to carry and expensive to build. In this paper, we introduce a system that is developed based on a MSP430 MCU(:Micro-Controller Unit) from TI(: Texas Instruments). The ultra-low power MSP430 MCUs make it possible to make a frequency analyzer in a very small size without the need of using a large-size battery. The proposed system can be used in situations where the frequency analyzer should be carried easily with an investigator and should be built at low cost sacrificing some accuracy. We implemented the system using a launchpad supplied by TI and could confirm that the proposed system could identify with a high-accuracy the frequencies of various artificial and natural sounds.

High Strength SA508 Gr.4N Ni-Cr-Mo Low Alloy Steels for Larger Pressure Vessels of the Advanced Nuclear Power Plant (차세대 원전 대형 압력용기용 고강도 SA508 Gr.4N Ni-Cr-Mo계 저합금강 개발)

  • Kim, Min-Chul;Park, Sang-Gyu;Lee, Ki-Hyoung;Lee, Bong-Sang
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.10 no.1
    • /
    • pp.100-106
    • /
    • 2014
  • There is a growing need to introduce advanced pressure vessel steels with higher strength and toughness for the optimizatiooCn of the design and construction of longer life and larger capacity nuclear power plants. SA508 Gr.4N Ni-Cr-Mo low alloy steels have superior strength and fracture toughness, compared to SA508 Gr.3 Mn-Mo-Ni low alloy steel. Therefore, the application of SA508 Gr.4N low alloy steel could be considered to satisfy the strength and toughness required in advanced nuclear power plants. The purpose of this study is to characterize the microstructure and mechanical properties of SA508 Gr.4N low alloy steels. 1 ton ingot of SA508 Gr.4N model alloy was fabricated by vacuum induction melting followed by forging, quenching, and tempering. The predominant microstructure of the SA508 Gr.4N model alloy is tempered martensite having small packet and fine Cr-rich carbides. The yield strength at room temperature was 540MPa, and it was decreased with an increase of test temperature while DSA phenomenon occurred at around $288^{\circ}C$. Overall transition property of SA508 Gr.4N model alloy was much better than SA508 Gr.3 low alloy steel. The index temperature, $T_{41J}$, of SA508 Gr.4N model alloy was $-132^{\circ}C$ in Charpy impact tests, and reference nil-ductility transition temperature, $RT_{NDT}$ of $-105^{\circ}C$ was obtained from drop weight tests. From the fracture toughness tests performed in accordance with the ASTM standard E1921 Master curve method, the reference temperature, $T_0$ was $-147^{\circ}C$, which was improved more than $60^{\circ}C$ compared to SA508 Gr.3 low alloy steels.

A Study on the Full-HD HEVC Encoder IP Design (고해상도 비디오 인코더 IP 설계에 대한 연구)

  • Lee, Sukho;Cho, Seunghyun;Kim, Hyunmi;Lee, Jehyun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.12
    • /
    • pp.167-173
    • /
    • 2015
  • This paper presents a study on the Full-HD HEVC(High Efficiency Video Coding) encoder IP(Intellectual Property) design. The designed IP is for HEVC main profile 4.1, and performs encoding with a speed of 60 fps of full high definition. Before hardware and software design, overall reference model was developed with C language, and we proposed a parallel processing architecture for low-power consumption. And also we coded firmware and driver programs relating IP. The platform for verification of developed IP was developed, and we verified function and performance for various pictures under several encoding conditions by implementing designed IP to FPGA board. Compared to HM-13.0, about 35% decrease in bit-rate under same PSNR was achieved, and about 25% decrease in power consumption under low-power mode was performed.

Speed Sensorless Control of Ultrasonic Motors Using Neural Network

  • Yoshida Tomohiro;Senjyu Tomonobu;Nakamura Mitsuru;Urasaki Naomitsu;Funabashi Toshihisa;Sekine Hideomi
    • Journal of Power Electronics
    • /
    • v.6 no.1
    • /
    • pp.38-44
    • /
    • 2006
  • In this paper, a speed sensorless control for an ultrasonic motor (USM) using a neural network (NN) is presented. In the proposed method, rotor speed is estimated by a three-layer NN which adapts nonlinearities associated with load torque and motor temperature into control. The intrinsic properties of a USM, such as high torque for low speeds, high static torque, compact size, etc., offer great advantages for industrial applications. However, the speed property of a USM has strong nonlinear properties associated with motor temperature and load torque, which make accurate speed control difficult. These properties are considered in designing a control method through the application of mathematical models. In these strategies, a detailed speed model of the USM is required which makes actual applications impractical. In the proposed method, a three-layer NN estimates the speed of the USM from the drive frequency, the root mean square value of input voltage and the surface temperature of the USM, where no mechanical speed sensor is needed. The NN speed based estimator enables inclusion of variations in driving conditions due to input signals of the NN involved during the driving state of the USM. The disuse of sensors offers many advantages on both the cost and maintenance front. Moreover, the model free sensorless control method offers practical controller construction within a small number of parameters. To validate the proposed speed sensorless control method for a USM, experiments have been executed under several conditions.

Design of Data Exchange Technique for Power Facilities Monitoring using Augmented Reality (증강현실을 이용한 전력 설비 모니터링 시스템의 데이터 교환 기법 설계)

  • Kim, Donghyun;Kim, Seoksoo
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.11
    • /
    • pp.16-22
    • /
    • 2020
  • Since it is difficult for individual power producers and non-professionals who lack basic knowledge to control, manage, and operate facilities through EMS (Energy Management System), augmented reality and virtual reality monitoring systems are applied. However, in the existing systems, data access efficiency is inferior due to the process of analyzing column values for analog signal values collected from sensors and converting data after combining the columns. In addition, high-speed operation processing is difficult due to a large number of indexes for accommodating access patterns for various analog signal waveforms. Therefore, in this paper, a bitmap generator is inserted into a non-tree structure to convert the data collected from power facilities into physical property information, and the converted information is encrypted with a common key, so that the resources for the resources shared between each device are We propose a method of exchanging data for an augmented reality-based power system that is controlled by measurement.

RIS Selection and Energy Efficiency Optimization for Irregular Distributed RIS-assisted Communication Systems

  • Xu Fangmin;Fu Jinzhao;Cao HaiYan;Hu ZhiRui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.7
    • /
    • pp.1823-1840
    • /
    • 2023
  • In order to improve spectral efficiency and reduce power consumption for reconfigurable intelligent surface (RIS) assisted wireless communication systems, a joint design considering irregular RIS topology, RIS on-off switch, power allocation and phase adjustment is investigated in this paper. Firstly, a multi-dimensional variable joint optimization problem is established under multiple constraints, such as the minimum data requirement and power constraints, with the goal of maximizing the system energy efficiency. However, the proposed optimization problem is hard to be resolved due to its property of nonlinear nonconvex integer programming. Then, to tackle this issue, the problem is decomposed into four sub-problems: topology design, phase shift adjustment, power allocation and switch selection. In terms of topology design, Tabu search algorithm is introduced to select the components that play the main role. For RIS switch selection, greedy algorithm is used to turn off the RISs that play the secondary role. Finally, an iterative optimization algorithm with high data-rate and low power consumption is proposed. The simulation results show that the performance of the irregular RIS aided system with topology design and RIS selection is better than that of the fixed topology and the fix number of RISs. In addition, the proposed joint optimization algorithm can effectively improve the data rate and energy efficiency by changing the propagation environment.

Fabrication of Triode Type Field Emission Device Using Carbon Nanotubes Synthesized by Thermal Chemical Vapor Deposition (열 화학 기상 증착법을 이용한 삼극관 구조의 탄소 나노 튜브 전계 방출 소자의 제조)

  • Yu W. J.;Cho Y. S.;Choi G. S.;Kim D. J.
    • Korean Journal of Materials Research
    • /
    • v.14 no.8
    • /
    • pp.542-546
    • /
    • 2004
  • We report a new fabrication process for high performance triode type CNT field emitters and their superior electrical properties. The CNT-based triode-type field emitter structure was fabricated by the conventional semiconductor processes. The keys of the fabrication process are spin-on-glass coating and trim-and-leveling of the carbon nanotubes grown in trench structures by employing a chemical mechanical polishing process. They lead to strong adhesion and a uniform distance from the carbon nanotube tips to the electrode. The measured emission property of the arrays showed a remarkably uniform and high current density. The gate leakage current could be remarkably reduced by coating of thin $SiO_{2}$ insulating layer over the gate metal. The field enhancement factor(${\beta}$) and emission area(${\alpha}$) were calculated from the F-N plot. This process can be applicable to fabrication of high power CNT vacuum transistors with good electrical performance.

Pyroelectric Properties of PZT(30/70) Thick film Prepared by Sol-Gel Method (Sol-Gel 법으로 제작된 PZT(30/70) 후막의 초전특성)

  • 송금석;장동훈;강성준;윤영섭
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.1121-1124
    • /
    • 2003
  • PZT(30/70) thick film was fabricated by using 1,3 propanediol-based sol-gel method. Prepared film of pyroelectric property was investigated by Dynamic method of modulation frequency dependence. Pyroelectric coefficient was obtained about 5.0$\times$10$^{-8}$ C/$\textrm{cm}^2$.K. The figure of merits for voltage responsivity and specific detectivity were 3.4$\times$10$^{-11}$ C.cm/J and 5.9$\times$10$^{-9}$ C.cm/J, respectively, because of relative high-dielectric constant and high-pyroelectric coefficient. Voltage responsivity was increased at low modulation frequency and it was decreased at high modulation frequency. Voltage responsivity was maximum 1.84 V/W at 10 Hz. As Johnson noise is dominant, Noise voltage was increased nearly proportional to f$^{-1}$ 2/. Noise equivalent power and specific detectivity were 2.83$\times$10$^{-7}$ W/Hz$^{1}$2/ and 3.13$\times$10$^{5}$ cm.Hz$^{1}$2//W the same frequency at 80 Hz, respectively.

  • PDF