• Title/Summary/Keyword: high power property

Search Result 500, Processing Time 0.023 seconds

Adaptive On-line State-of-available-power Prediction of Lithium-ion Batteries

  • Fleischer, Christian;Waag, Wladislaw;Bai, Ziou;Sauer, Dirk Uwe
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.516-527
    • /
    • 2013
  • This paper presents a new overall system for state-of-available-power (SoAP) prediction for a lithium-ion battery pack. The essential part of this method is based on an adaptive network architecture which utilizes both fuzzy model (FIS) and artificial neural network (ANN) into the framework of adaptive neuro-fuzzy inference system (ANFIS). While battery aging proceeds, the system is capable of delivering accurate power prediction not only for room temperature, but also at lower temperatures at which power prediction is most challenging. Due to design property of ANN, the network parameters are adapted on-line to the current battery states (state-of-charge (SoC), state-of-health (SoH), temperature). SoC is required as an input parameter to SoAP module and high accuracy is crucial for a reliable on-line adaptation. Therefore, a reasonable way to determine the battery state variables is proposed applying a combination of several partly different algorithms. Among other SoC boundary estimation methods, robust extended Kalman filter (REKF) for recalibration of amp hour counters was implemented. ANFIS then achieves the SoAP estimation by means of time forward voltage prognosis (TFVP) before a power pulse occurs. The trade-off between computational cost of batch-learning and accuracy during on-line adaptation was optimized resulting in a real-time system with TFVP absolute error less than 1%. The verification was performed on a software-in-the-loop test bench setup using a 53 Ah lithium-ion cell.

Fabrication and Evaluation of Heat Transfer Property of 50 Watts Rated LED Array Module Using Chip-on-board Type Ceramic-metal Hybrid Substrate (Chip-on-board 형 세라믹-메탈 하이브리드 기판을 적용한 50와트급 LED 어레이 모듈의 제조 및 방열특성 평가)

  • Heo, Yu Jin;Kim, Hyo Tae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.4
    • /
    • pp.149-154
    • /
    • 2018
  • This paper describes the fabrication and heat transfer property of 50 watts rated LED array module where multiple chips are mounted on chip-on-board type ceramic-metal hybrid substrate with high heat dissipation property for high power street and anti-explosive lighting system. The high heat transfer ceramic-metal hybrid substrate was fabricated by conformal coating of thick film glass-ceramic and silver pastes to form insulation and conductor layers, using thick film screen printing method on top of the high thermal conductivity aluminum alloy heat-spreading panel, then co-fired at $515^{\circ}C$. A comparative LED array module with the same configuration using epoxy resin based FR-4 PCB with thermalvia type was also fabricated, then the thermal properties were measured with multichannel temperature sensors and thermal resistance measuring system. As a result, the thermal resistance of the ceramic-metal hybrid substrate in the $4{\times}9$ type LEDs array module exhibited about one third to the value as that of FR-4 substrate, implying that at least triple performance of heat transfer property as that of FR-4 substrate was realized.

Exploiting Quality Scalability in Scalable Video Coding (SVC) for Effective Power Management in Video Playback (계층적 비디오 코딩의 품질확장성을 활용한 전력 관리 기법)

  • Jeong, Hyunmi;Song, Minseok
    • KIISE Transactions on Computing Practices
    • /
    • v.20 no.11
    • /
    • pp.604-609
    • /
    • 2014
  • Decoding processes in portable media players have a high computational cost, resulting in high power consumption by the CPU. If decoding computations are reduced, the power consumed by the CPU is also be reduced, but such a choice generally results in a degradation of the video quality for the users, so it is essential to address this tradeoff. We proposed a new CPU power management scheme that can make use of the scalability property available in the H.164/SVC standard. We first proposed a new video quality model that makes use of a video quality metric(VQM) in order to efficiently take into account the different quantization factors in the SVC. We then propose a new dynamic voltage scaling(DVS) scheme that can selectively combine the previous decoding times and frame sizes in order to accurately predict the next decoding time. We then implemented a scheme on a commercial smartphone and performed a user test in order to examine how users react to the VQM difference. Real measurements show that the proposed scheme uses up to 34% fewer energy than the Linux DVFS governor, and user tests confirm that the degradation in the quality is quite tolerable.

Effects of Electrostatic Discharge Stress on Current-Voltage and Reverse Recovery Time of Fast Power Diode

  • Bouangeune, Daoheung;Choi, Sang-Sik;Cho, Deok-Ho;Shim, Kyu-Hwan;Chang, Sung-Yong;Leem, See-Jong;Choi, Chel-Jong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.4
    • /
    • pp.495-502
    • /
    • 2014
  • Fast recovery diodes (FRDs) were developed using the $p^{{+}{+}}/n^-/n^{{+}{+}}$ epitaxial layers grown by low temperature epitaxy technology. We investigated the effect of electrostatic discharge (ESD) stresses on their electrical and switching properties using current-voltage (I-V) and reverse recovery time analyses. The FRDs presented a high breakdown voltage, >450 V, and a low reverse leakage current, < $10^{-9}$ A. From the temperature dependence of thermal activation energy, the reverse leakage current was dominated by thermal generation-recombination and diffusion, respectively, at low and high temperature regions. By virtue of the abrupt junction and the Pt drive-in for the controlling of carrier lifetime, the soft reverse recovery behavior could be obtained along with a well-controlled reverse recovery time of 21.12 ns. The FRDs exhibited excellent ESD robustness with negligible degradations in the I-V and the reverse recovery characteristics up to ${\pm}5.5$ kV of HBM and ${\pm}3.5$ kV of IEC61000-4-2 shocks. Likewise, transmission line pulse (TLP) analysis reveals that the FRDs can handle the maximum peak pulse current, $I_{pp,max}$, up to 30 A in the forward mode and down to - 24 A in the reverse mode. The robust ESD property can improve the long term reliability of various power applications such as automobile and switching mode power supply.

Study on the welding characteristic of aluminum laser weld using filler wire (용가 와이어를 이용한 알루미늄 레이저 용접부의 용접 특성에 관한 연구)

  • Park, Young-Whan;Park, Hyunsung;Rhee, Sehun
    • Laser Solutions
    • /
    • v.8 no.3
    • /
    • pp.11-19
    • /
    • 2005
  • In automotive industry, light weight vehicle is one of issues because of the air pollution and the protection of environment. Therefore, automotive manufacturers have tried to adopt light materials such as aluminum alloy to production line. Aluminum welding using laser has some advantages high energy density and high productivity. It is very important to understand weld characteristic according to welding condition in order to determine the possibility of application to car body. In this study, Nd:YAG laser welding of 5182 aluminum alloy with filler wire AA5356 was carried out through experimental design according to wire feed rate, laser power and welding speed. Weld bead shape in terms of cross section photo, bead with, height of reinforcement and penetration depth and mechanical property in terms of tensile strength and formability was investigated. Analysis of variation (ANOVA) was performed to know the effect of weld parameter for weldability, laser power was statistically most significance factor of three variables.

  • PDF

Impact Echo Test for the Dynamic Characteristics of a Vibration-Mitigated Concrete Structure

  • Chung, Young-Soo;Park, Young-Goo
    • KCI Concrete Journal
    • /
    • v.14 no.1
    • /
    • pp.23-29
    • /
    • 2002
  • Recent construction activities have given rise to civil petitions associated with vibration-induced damages or nuisances. To mitigate unfavorable effects of construction activities, the measures to reduce or isolate from vibration need to be adopted. In this research, a vibration-mitigated concrete, which is one of the active measures for reducing vibration in concrete structures, was investigated. Concrete was mixed with vibration-reducing materials (i.e. latex, rubber power, plastic resin, and polystyrofoam) to reduce vibration and tested to evaluate dynamic material properties and structural characteristics. Normal and high strength concrete specimens with a certain level of damage were also tested for comparisons. In addition, recycling tires and plastic materials were added to produce a vibration-reducing concrete. A total of 32 concrete bars and eight concrete beams were tested to investigate the dynamic material properties and structural characteristics. Wave measurements on concrete bars showed that vibration-mitigated concrete has larger material damping ratio than normal or high strength concrete. Styrofoam turned out to be the most effective vibration-reducing mixture. Flexural vibration tests on eight flexural concrete beams also revealed that material damping ratio of the concrete beams is much smaller than structural damping ratio for all the cases.

  • PDF

A Study on Characteristics and Driving Techniques of Energy Recovery Type Inverter for Piezo Actuator Drive (피에조 액츄에이터 구동용 에너지 회수형 인버터의 특성과 구동 기법 연구)

  • Hong, Sun-Ki;Lee, Jung-Seop;Byeon, Nam-Hee;Na, Yoo-Cheong;Kang, Tae-Sam
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.8
    • /
    • pp.1095-1100
    • /
    • 2013
  • Piezo devices have large power density and simple structure compared with conventional electrical motors. Thus they can generate larger forces than the conventional actuators with small size. Their resopnses to commands are also very fast and thus the bandwidths are very wide. Thus the piezo devices are expected to be used widely in the future for actuating devices requiring fast response and large actuating force with small size. However, the piezo actuators need high voltage with high driving current due to their large capacitive property. In this paper, proposed is a simple method to drive piezo devices using voltage inversion circuit with coli inductance. The coil inductance carries the charges in the piezo device to the opposite side, inverting the polarity of the applied voltage, thus saving the power to drive the device with AC voltages. Experiments with real circuit demonstrates that the proposed scheme can improve the energy efficiency very much.

Comparison of Radiation Characteristics and Radiant Quantities per unit Electrical Power between High Luminance Light Emitting Diode and Fishing Lamp light Source (고휘도 발광다이오우드와 집어등 광원의 방사특성 및 단위 전력당 방사량 비교)

  • Choi, Sok-Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.41 no.6
    • /
    • pp.511-517
    • /
    • 2008
  • The radiation characteristics and economic efficiency of high - luminance light - emitting diodes (LEDs), a metal halide lamp, and a halogen lamp were studied to evaluate their potential as an energy-saving light source for fishing lamps. The wavelengths at which irradiance was maximum were 709, 613, 473, 501, 525, 465, 578, and 973 nm for red, orange, blue, peacock blue, green, and white LEDs, the metal halide lamp, and the halogen lamp, respectively. If the irradiance characteristics at 300-1,100 nm wavelengths are set as 100%, the irradiance rates at 381-780 nm were 99-78%, 82%, and 24% for the LEDs, metal halide lamp, and halogen lamp, respectively. The economic efficiency was superior in the order metal halide lamp, halogen lamp, peacock blue LED, and blue LED at 381-780 nm and metal halide lamp, peacock blue LED, blue LED, and halogen lamp at 480-520 nm. Based on the radiation characteristics and economic efficiency evaluated at 480-520 nm, the blue and peacock blue LED light sources can be used as energy-saving light sources for fishing lamps.

Electrochemical Properties of Polyaniline Electrodes Prepared by Chemical Synthesis and Electrodeposition: Revisited with High-Scan-Rate Behaviors

  • Nam, Ji Hyun;Woo, Cho Hyeon;Kim, Kwang Man;Ryu, Kwang Sun;Ko, Jang Myoun
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.80-84
    • /
    • 2012
  • The polyaniline (PANI) electrodes are prepared by chemical synthesis and electrodeposition methods and their supercapacitive properties are characterized and compared by morphology observation, cyclic voltammetry as a function of scan rate, and impedance spectra analysis. In particular, the supercapacitive properties obtained in the range of higher potential scan rates (e.g., over $200mV\;s^{-1}$) are emphasized to be capable of utilizing adequately the high power capability of supercapacitor. As a result, the PANI electrode by the electrodeposition shows superior specific capacitance (max. $474F\;g^{-1}$ at $10mV\;s^{-1}$ and about $390F\;g^{-1}$ at $500mV\;s^{-1}$) than those by the chemical synthesis method. This is mainly due to highly porous structure obtained by the electrodeposition to yield higher specific surface area.

A Study on Distillation Property of Automotive Gasoline and Diesel Fuel (자동차용 가솔린과 디젤 연료의 증류특성에 관한 연구)

  • Youm, Kwang-Wook;Kim, Sang-Jin
    • Journal of Power System Engineering
    • /
    • v.18 no.5
    • /
    • pp.11-15
    • /
    • 2014
  • Currently, there are active researches being conducted on a new combustion technology that can reduce emission quantity while enhancing vehicle performance as well as Improving fuel quality. In a gasoline engine that uses petroleum, high volatility makes it easy to jump spark ignition and prevent knocking phenomenon that occurs inside an engine. In a diesel engine that uses diesel fuel, high volatility reduces combustion residues and toxic gas and is therefore good for protecting the environment. Therefore, for fuel used in a vehicle, volatility is an important factor that influences not only engine performance but also environmental protection. This research conducted a distillation experiment using gasoline and diesel fuel for vehicles produced by domestic oil companies. The test was conducted in accordance with the method of distillation experiment described in KS M ISO3405. In addition, it used the result of analysis from the experiment to examine visual distillation characteristics of each fuel and developed a formula based on distillation temperature.