DOI QR코드

DOI QR Code

Electrochemical Properties of Polyaniline Electrodes Prepared by Chemical Synthesis and Electrodeposition: Revisited with High-Scan-Rate Behaviors

  • Nam, Ji Hyun (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Woo, Cho Hyeon (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Kim, Kwang Man (Research Team of Power Control Devices, Electronics & Telecommunications Research Institute (ETRI)) ;
  • Ryu, Kwang Sun (Department of Chemistry, University of Ulsan) ;
  • Ko, Jang Myoun (Department of Chemical and Biological Engineering, Hanbat National University)
  • Received : 2012.05.17
  • Accepted : 2012.06.15
  • Published : 2012.06.30

Abstract

The polyaniline (PANI) electrodes are prepared by chemical synthesis and electrodeposition methods and their supercapacitive properties are characterized and compared by morphology observation, cyclic voltammetry as a function of scan rate, and impedance spectra analysis. In particular, the supercapacitive properties obtained in the range of higher potential scan rates (e.g., over $200mV\;s^{-1}$) are emphasized to be capable of utilizing adequately the high power capability of supercapacitor. As a result, the PANI electrode by the electrodeposition shows superior specific capacitance (max. $474F\;g^{-1}$ at $10mV\;s^{-1}$ and about $390F\;g^{-1}$ at $500mV\;s^{-1}$) than those by the chemical synthesis method. This is mainly due to highly porous structure obtained by the electrodeposition to yield higher specific surface area.

Keywords

References

  1. K. S. Ryu, K. M. Kim, N.-G. Park, Y. J. Park, and S. H. Chang, J. Power Sources, 103 , 305 (2002). https://doi.org/10.1016/S0378-7753(01)00862-X
  2. J. M. Ko, R. Y. Song, H.-H. Ju, J. W. Yoon, B. G. Kim,and D. W. Kim, Electrochim. Acta, 50, 873 (2004). https://doi.org/10.1016/j.electacta.2004.02.064
  3. K. S. Ryu, S. K. Jeong, J. Joo, and K. M. Kim, J. Phys. Chem. B., 111, 731 (2007). https://doi.org/10.1021/jp064243a
  4. K. S. Ryu and K. M. Kim, J. Power Sources, 165, 420 (2007). https://doi.org/10.1016/j.jpowsour.2006.11.066
  5. J. M. Ko, K. S. Ryu, S. Kim, and K. M. Kim, J. Appl. Electrochem, 39, 1331 (2009). https://doi.org/10.1007/s10800-009-9800-y
  6. R. Y. Song, J. H. Park, S. R. Sivakkumar, S. H. Kim, J. M. Ko, D.-Y. Park, S. M. Jo, and D. Y. Kim, J. Power Sources, 166, 297 (2007). https://doi.org/10.1016/j.jpowsour.2006.12.093
  7. S. R. Sivakkumar and D.-W. Kim, J. Electrochem. Soc., 154, A134 (2007). https://doi.org/10.1149/1.2404901
  8. K. S. Ryu, X. Wu, Y.-G. Lee, and S. H. Chang, J. Appl. Polym. Sci., 89, 1300 (2003). https://doi.org/10.1002/app.12242
  9. D. S. Dhawale, A. Vinu, and C. D. Lokhande, Electrochim. Acta, 56, 9482 (2011). https://doi.org/10.1016/j.electacta.2011.08.042
  10. P. R. Deshmukh, S. N. Pusawale, V. S. Jamadade, U. M. Patil, and C. D. Lokhande, J. Alloys Comp., 509, 5064 (2011). https://doi.org/10.1016/j.jallcom.2010.12.009
  11. C. A. Amarnath, J. H. Chang, D. Kim, R. S. Mane, S.-H. Han, and D. Sohn, Mater. Chem. Phys., 113, 14 (2009). https://doi.org/10.1016/j.matchemphys.2008.08.068
  12. V. Gupta and N. Miura, Mater. Lett., 60, 1466 (2006). https://doi.org/10.1016/j.matlet.2005.11.047
  13. V. Gupta and N. Miura, Electrochem. Solid-State Lett., 8, A630 (2005). https://doi.org/10.1149/1.2087207
  14. D. S. Dhawale, D. P. Dubal, V. S. Jamadade, R. R. Salunkhe, and C. D. Lokhande, Synth. Metals, 160, 519 (2010). https://doi.org/10.1016/j.synthmet.2010.01.021
  15. J. Tu, J. Hou, W. Wang, S. Jiao, and H. Zhu, Synth. Metals, 161, 1255 (2011). https://doi.org/10.1016/j.synthmet.2011.04.019
  16. K. S. Ryu, Y.-G. Lee, K. M. Kim, Y. J. Park, Y.-S. Hong, X. Wu, M. G. Kang, N-G. Park, R. Y. Song, and J. M. Ko, Synth. Metals, 153, 89 (2005). https://doi.org/10.1016/j.synthmet.2005.07.167

Cited by

  1. A New Algorithm Design for the Real-time Electrochemical Impedance Monitoring System vol.3, pp.4, 2012, https://doi.org/10.5229/JECST.2012.3.4.154
  2. Supercapacitive properties of layered electrodes composed of electrodeposited RuO 2 and polyaniline vol.196, 2016, https://doi.org/10.1016/j.electacta.2016.02.194
  3. Supercapacitive properties of electrodeposited polyaniline electrode in acrylic gel polymer electrolytes vol.189, 2014, https://doi.org/10.1016/j.synthmet.2014.01.011