• Title/Summary/Keyword: high porosity

Search Result 1,036, Processing Time 0.022 seconds

A refined vibrational analysis of the FGM porous type beams resting on the silica aerogel substrate

  • Mohammad Khorasani;Luca Lampani;Abdelouahed Tounsi
    • Steel and Composite Structures
    • /
    • v.47 no.5
    • /
    • pp.633-644
    • /
    • 2023
  • Taking a look at the previously published papers, it is revealed that there is a porosity index limitation (around 0.35) for the mechanical behavior analysis of the functionally graded porous (FGP) structures. Over mentioned magnitude of the porosity index, the elastic modulus falls below zero for some parts of the structure thickness. Therefore, the current paper is presented to analyze the vibrational behavior of the FGP Timoshenko beams (FGPTBs) using a novel refined formulation regardless of the porosity index magnitude. The silica aerogel foundation and various hydrothermal loadings are assumed as the source of external forces. To obtain the FGPTB's properties, the power law is hired, and employing Hamilton's principle in conjunction with Navier's solution method, the governing equations are extracted and solved. In the end, the impact of the various variables as different beam materials, elastic foundation parameters, and porosity index is captured and displayed. It is revealed that changing hygrothermal loading from non-linear toward uniform configuration results in non-dimensional frequency and stiffness pushing up. Also, Al - Al2O3 as the material composition of the beam and the porosity presence with the O pattern, provide more rigidity in comparison with using other materials and other types of porosity dispersion. The presented computational model in this paper hopes to help add more accuracy to the structures' analysis in high-tech industries.

A model to develop the porosity of concrete as important mechanical property

  • Alyousef, Rayed;Alabduljabbar, Hisham;Mohamed, Abdeliazim Mustafa;Alaskar, Abdulaziz;Jermsittiparsert, Kittisak;Ho, Lanh Si
    • Smart Structures and Systems
    • /
    • v.26 no.2
    • /
    • pp.147-156
    • /
    • 2020
  • This numerical study demonstrates the porosity conditions and the intensity of the interactions with the aggressive agents. It is established that the density as well as the elastic modulus are correlated to ultrasonic velocity The following investigation assessed the effects of cement grade and porosity on tensile strength, flexural and compressive of Ultra High Performance Concrete (UHPC) as a numerical model in PLAXIS 2d Software. Initially, the existing strength-porosity equations were investigated. Furthermore, comparisons of the proposed equations with the existing models suggested the high accuracy of the proposed equations in predicting, cement grade concrete strength. The outcome obtained showed a ductile failure when un-corroded reinforced concrete demonstrates several bending-induced cracks transfer to the steel reinforcement. Moreover, the outcome also showed a brittle failure when wider but fewer transverse cracks occurred under bending loads. Sustained loading as well as initial pre-cracked condition during the corrosion development have shown to have significant impact on the corrosion behavior of concrete properties. Moreover, greater porosity was generally associated with lower compressive, flexural, and tensile strength. Higher cement grade, on the other hand, resulted in lower reduction in concrete strength. This finding highlighted the critical role of cement strength grade in determining the mechanical properties of concrete.

Examination on Application of High-Performance Concrete using Fine Fly Ash as Replacement Material of Silica Fume (고성능콘크리트의 제조에 사용되는 실리카 흄의 대체재로써 고분말 플라이애시의 적용성 검토)

  • Lee, Bum-Sik;Kim, Sang-Kyu;Kim, Sang-Youn;Choi, Sun-Mi;Lee, Gun-Su
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.9
    • /
    • pp.502-509
    • /
    • 2007
  • This paper investigated how Fine Fly Ash (FFA) with $14,000\;cm^2/g$ of Fineness affects the micro structure and material properties of High-Performance Concrete (HPC) before and after hardening from Material Test of HPC and Cement Paste. FFA is applied as a substitute of Silica Fume which is used necessarily in producing HPC. As a Material Test results, 5% FFA series specimen shows the lower fluidity than SF series specimen. When, however, the Fluidity of 10% FFA series specimen is increased reversely to the similar value of SF series specimen. The Porosity of FFA series specimen of 3 day age is displayed to $21{\sim}24%$, which is higher than $19{\sim}20%$ porosity of SF series specimen, while that of 28 day age is reached to $8{\sim}9%$, which is improved compared with 10% fo SF series specimen. It can be thought that FFA has better influence on the porosity of HPC in case of long term age. The Compressive strength of FFA series specimen shows the similar result with the property of porosity. The compressive strength of 28 day age FFA series specimen is $98{\sim}106%$ of SF series specimen and 107% of plain specimen to reveal better strength development.

High temperature resistance of self-compacting lightweight mortar incorporating expanded perlite and pumice

  • Karatas, Mehmet;Balun, Bilal;Benli, Ahmet
    • Computers and Concrete
    • /
    • v.19 no.2
    • /
    • pp.121-126
    • /
    • 2017
  • This paper presents the effect of aggregate type on high temperature resistance of self-compacting mortars (SCM) produced with normal and lightweight aggregates like expanded perlite and pumice. Silica fume (SF) and fly ash (FA) were used as mineral additives. Totally 13 different mixtures were designed according to the aggregate rates. Mini slump flow, mini V-funnel and viscometer tests were carried out on the fresh mortar. On the other hand, bulk density, porosity, water absorption and high temperature tests were made on the hardened SCM. After being heated to temperatures of 300, 600 and $900^{\circ}C$, respectively, the tensile strength in bending and compressive strength of mortars determined. As a result of the experiments, the increase in the use of lightweight aggregate increased total water absorption and porosity of mortars. It is observed that, the increment in the usage of lightweight aggregate decreased tensile strength in bending and compressive strengths of mortar specimens exposed to high temperatures but the usage of up to 10% expanded perlite in mortar increased the compressive strength of specimens exposed to $300^{\circ}C$.

Performance Characteristics of a Regenerative Heat Exchanger Depending on Its Porous Structure (스털링 엔진용 재생 열교환기의 다공체 구조에 따른 성능 특성)

  • Shin, Myung-Chul;Ahn, Joon;Kang, Byung-Ha
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.5
    • /
    • pp.415-421
    • /
    • 2012
  • Stirling engine is an external combustion engine, whose efficiency approaches that of Carnot engine with the help of a regenerator. The regenerator is a heat exchanger composed of porous medium, whose performance is dependent on the pore structure. Three types of pore structures are considered in the present study. They are wire screen, random wire and composite structure, i.e. a combination of wire screens with different hydraulic diameters. The porosity more highly affects the performance of a regenerator compared to the hydraulic diameter. The random wire can yield high effectiveness even at a high porosity. The composite mesh gives better performance when the hydraulic diameter decreases in the direction from hot side to cold side.

Simulation and modeling for stability analysis of functionally graded non-uniform pipes with porosity-dependent properties

  • Peng Zhang;Jun Song;Tayebeh Mahmoudi
    • Steel and Composite Structures
    • /
    • v.48 no.2
    • /
    • pp.235-250
    • /
    • 2023
  • The present paper examines the stability analysis of the buckling differentiae of the small-scale, non-uniform porosity-dependent functionally graded (PD-FG) tube. The high-order beam theory and nonlocal strain gradient theory are operated for the mathematical modeling of nanotubes based on the Hamilton principle. In this paper, the external radius function is non-uniform. In contrast, the internal radius is uniform, and the cross-section changes along the tube length due to these radius functions based on the four types of useful mathematical functions. The PD-FG material distributions are varied in the radial direction and made with ceramics and metals. The governing partial differential equations (PDEs) and associated boundary conditions are solved via a numerical method for different boundary conditions. The received outcomes concerning different presented parameters are valuable to the design and production of small-scale devices and intelligent structures.

Study for Dynamic Modulus Change Measurement of Permeable Asphalt Mixtures with Various Porosity using Non-Destructive Impact Wave (충격공진시험을 이용한 다양한 공극률을 가진 투수성 아스팔트 혼합물의 동탄성계수 변화 측정에 관한 연구)

  • Jang, Byung Kwan;Yang, Sung Lin;Mun, Sung Ho
    • International Journal of Highway Engineering
    • /
    • v.15 no.3
    • /
    • pp.65-74
    • /
    • 2013
  • PURPOSES: This study is to evaluate the dynamic modulus changes of permeable asphalt mixtures by using non-destructive impact testing method and to compare the dynamic moduli of permeable asphalt mixtures through repeated freezing and thawing conditions. METHODS: For the study, non-destructive impact testing method is used in order to obtain dynamic modulus of asphalt specimen and to confirm the change of dynamic modulus before and after freezing and thawing conditions. RESULTS : This study has shown that the dynamic moduli of asphalt concrete specimens consisting of 10%, 15% and 20% porosity are reduced by 11.851%, 1.9564%, 24.593% after freezing and thawing cycles. CONCLUSIONS : Non-destructive impact testing method is very useful and has repeatability. Specimen with 15% porosity has high durability than others.

Study on the Improvement of Paper Sludge Dewatering by Adding Wastepaper Powders (고지 분말 첨가에 따른 제지 슬러지의 탈수성 개선에 관한 연구)

  • 이성호;임택준;조준형
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.34 no.2
    • /
    • pp.47-53
    • /
    • 2002
  • Three types of sludges including printing paper, newsprint and tissue paper were prepared at 5% concentration for filtration-expression operations. Filtration-expression characteristics of sludge were measured in different pressure and wastepaper powder dosage. Specific filtration resistance and porosity were calculated with theoretical formula. Higher pressure increased the progresses of filtration and expression while it decreased porosity. The addition of 5% wastepaper powder more accelerated the progresses of filtration and expression than that of 10% wastepaper powder. The lowest porosity value was also measured at 5% dosage of wastepaper powder. The decrease of porosity implied the decrease of moisture content in cake. The results indicated that dewatering of sludge was efficient in high pressure and 5% dosage of wastepaper powder.

Effect of Laser Pulse Shaping on Reduction in Defects of Stainless Steel Sport Weld Metals (스텐레스 강 용접부에 형성되는 결함의 저감에 미치는 레이저 펄스 파형의 영향)

  • 김종도;카따야마세이지
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.3 no.2
    • /
    • pp.13-21
    • /
    • 1997
  • This paper describes the effectiveness of laser pulse shaping in eliminating weld defects such as porosity, cracks and undercuts in pulsed Nd:YAG Laser welding. A large porosity was formed in a keyhole mode of deep penetration weld metal of any stainless steel. Solidification cracks were present in Type 303 with about 0.3%s. The conditions for the formation of porosity were determined in further detail in Type 316. With the objectives of obtaining a fundamental knowledge of formation and prevention of weld defects, the fusion and solidification behavior of a molten puddle was observed during laser spot welding of Type 310S. through high speed video photographing technique. It was deduced that cellular dendrite tips grew rapidly from the bottom to the surface, and consequently residual liquid remained at the grain boundaries in wide regions and enhanced the solidification cracking susceptibility. Several laser pulse shapes were investigated and optimum pulse shapes were proposed for the reduction and prevention of porosity and solidification cracking.

  • PDF

Effect of relaxation time on generalized double porosity thermoelastic medium with diffusion

  • Mohamed I.A. Othman;Nehal T. Mansour
    • Geomechanics and Engineering
    • /
    • v.32 no.5
    • /
    • pp.475-482
    • /
    • 2023
  • This paper studies the effect of the relaxation time on a two-dimensional thermoelastic medium which has a doubly porous structure in the presence of diffusion and gravity. The normal mode analysis is used to obtain the analytic expressions of the physical quantities, which we take the solution form in the exponential image. We have discussed a homogeneous thermoelastic half-space with double porosity with the effect of diffusion and gravity. The equations of generalized thermoelastic material with double porosity structure with one relaxation time have been developed. Moreover, the expressions of many physical quantities are explained. The general solutions, under specific boundary conditions of the problem, were found in some detail. In addition, numerical results are computed.