DOI QR코드

DOI QR Code

A refined vibrational analysis of the FGM porous type beams resting on the silica aerogel substrate

  • Mohammad Khorasani (Department of Mechanical & Industrial Engineering, Louisiana State University) ;
  • Luca Lampani (Department of Mechanical and Aerospace Engineering, Sapienza University) ;
  • Abdelouahed Tounsi (Department of Civil and Environmental Engineering, King Fahd University of Petroleum & Minerals)
  • Received : 2021.10.12
  • Accepted : 2023.04.26
  • Published : 2023.06.10

Abstract

Taking a look at the previously published papers, it is revealed that there is a porosity index limitation (around 0.35) for the mechanical behavior analysis of the functionally graded porous (FGP) structures. Over mentioned magnitude of the porosity index, the elastic modulus falls below zero for some parts of the structure thickness. Therefore, the current paper is presented to analyze the vibrational behavior of the FGP Timoshenko beams (FGPTBs) using a novel refined formulation regardless of the porosity index magnitude. The silica aerogel foundation and various hydrothermal loadings are assumed as the source of external forces. To obtain the FGPTB's properties, the power law is hired, and employing Hamilton's principle in conjunction with Navier's solution method, the governing equations are extracted and solved. In the end, the impact of the various variables as different beam materials, elastic foundation parameters, and porosity index is captured and displayed. It is revealed that changing hygrothermal loading from non-linear toward uniform configuration results in non-dimensional frequency and stiffness pushing up. Also, Al - Al2O3 as the material composition of the beam and the porosity presence with the O pattern, provide more rigidity in comparison with using other materials and other types of porosity dispersion. The presented computational model in this paper hopes to help add more accuracy to the structures' analysis in high-tech industries.

Keywords

References

  1. Amari, A., Hassan, Z.K., Al-Bahrani, M., Saberi, L. and Maktoof, M.A.J. (2022), "Practical parameter tuning toward enhancing thermomechanical shock resistance of the nanocomposite structure", Mech. Adv. Mater. Struct., 1-20. https://doi.org/10.1080/15376494.2022.2145531.
  2. Amir, S., Arshid, E., Rasti-Alhosseini, S.M.A. and Loghman, A. (2020), "Quasi-3D tangential shear deformation theory for size-dependent free vibration analysis of three-layered FG porous micro rectangular plate integrated by nano-composite faces in hygrothermal environment", J. Therm. Stresses, 43(2), 133-156. https://doi.org/10.1080/01495739.2019.1660601.
  3. Ansari, R. and Sahmani, S. (2011), "Bending behavior and buckling of nanobeams including surface stress effects corresponding to different beam theories", Int. J. Eng. Sci., 49(11), 1244-1255. https://doi.org/10.1016/j.ijengsci.2011.01.007.
  4. Arshid, E., Arshid, H., Amir, S. and Mousavi, S.B. (2021a), "Free vibration and buckling analyses of FG porous sandwich curved microbeams in thermal environment under magnetic field based on modified couple stress theory", Arch. Civil Mech. Eng., 21(1), 6. https://doi.org/10.1007/s43452-020-00150-x.
  5. Arshid, E., Khorasani, M., Soleimani-Javid, Z., Amir, S. and Tounsi, A. (2021b), "Porosity-dependent vibration analysis of FG microplates embedded by polymeric nanocomposite patches considering hygrothermal effect via an innovative plate theory", Eng. Comp., 0123456789. https://doi.org/10.1007/s00366-021-01382-y.
  6. Arshid, E., Kiani, A. and Amir, S. (2019), "Magneto-electro-elastic vibration of moderately thick FG annular plates subjected to multi physical loads in thermal environment using GDQ method by considering neutral surface", Proceedings Inst. Mech. Eng., Part L: J. Mater.: D. Appl., 233(10), 2140-2159. https://doi.org/10.1177/1464420719832626.
  7. Arshid, H., Khorasani, M., Soleimani-Javid, Z., Dimitri, R. and Tornabene, F. (2020), "Quasi-3D hyperbolic shear deformation theory for the free vibration study of honeycomb microplates with graphene nanoplatelets-reinforced epoxy skins", Molecules, 25(21), 5085. https://doi.org/10.3390/molecules25215085.
  8. Arshid, E., Amir, S. and Loghman, A. (2023), "Thermoelastic vibration characteristics of asymmetric annular porous reinforced with nano-fillers microplates embedded in an elastic medium: CNTs Vs. GNPs", Arch. Civil Mech. Eng., 23(2), 100. https://doi.org/10.1007/s43452-023-00624-8.
  9. Arshid, E., Soleimani-Javid, Z., Amir, S. and Duc, N.D. (2022), "Higher-order hygro-magneto-electro-thermomechanical analysis of FG-GNPs-reinforced composite cylindrical shells embedded in PEM layers", Aerosp. Sci. Tech., 126, 107573. https://doi.org/10.1016/j.ast.2022.107573.
  10. Babaei, H., Eslami, M.R. and Khorshidvand, A.R. (2019), "Thermal buckling and postbuckling responses of geometrically imperfect FG porous beams based on physical neutral plane", J. Therm. Stresses, 43(1), 109-131. https://doi.org/10.1080/01495739.2019.1660600.
  11. Chen, M., Ye, T., Zhang, J., Jin, G., Zhang, Y., Xue, Y., Ma, X. and Liu, Z. (2020a), "Isogeometric three-dimensional vibration of variable thickness parallelogram plates with in-plane functionally graded porous materials", Int. J. Mech. Sci., 169, 105304. https://doi.org/10.1016/j.ijmecsci.2019.105304.
  12. Chen, H., Song, H., Li, Y. and Safarpour, M. (2020b), "Hygro-thermal buckling analysis of polymer-CNT-fiber-laminated nanocomposite disk under uniform lateral pressure with the aid of GDQM", Eng. Comp.. https://doi.org/10.1007/s00366-020-01102-y.
  13. Deng, S., Cui, C.-X., Liu, L., Duan, L., Wang, J., Zhang, Y. and Qu, L. (2021), "A facile and controllable one-pot synthesis approach to amino-functionalized hollow silica nanoparticles with accessible ordered mesoporous shells", Chinese Chem. Lett., 32(3), 1177-1180. https://doi.org/10.1016/j.cclet.2020.09.002.
  14. Duc, N.D., Seung-Eock, K., Tuan, N.D., Tran, P. and Khoa, N.D. (2017), "New approach to study nonlinear dynamic response and vibration of sandwich composite cylindrical panels with auxetic honeycomb core layer", Aerosp. Sci. Tech., 70, 396-404. https://doi.org/10.1016/j.ast.2017.08.023.
  15. Ebrahimi, F., Nouraei, M. and Dabbagh, A. (2020), "Thermal vibration analysis of embedded graphene oxide powder-reinforced nanocomposite plates", Eng. Comp., 36(3), 879-895. https://doi.org/10.1007/s00366-019-00737-w.
  16. Ebrahimi, F., Seyfi, A. and Teimouri, A. (2023), "Torsional vibration analysis of scale-dependent non-circular graphene oxide powder-strengthened nanocomposite nanorods", Eng. Comp., 39(1), 173-184. https://doi.org/10.1007/s00366-021-01528-y.
  17. Fan, F., Sahmani, S. and Safaei, B. (2021), "Isogeometric nonlinear oscillations of nonlocal strain gradient PFGM micro/nano-plates via NURBS-based formulation", Compos. Struct., 255, 112969. https://doi.org/10.1016/j.compstruct.2020.112969.
  18. Farhangi, V., Zadehmohamad, M., Monshizadegan, A., Izadifar, M., Moradi, M.J. and Dabiri, H. (2023), "Effects of geogrid reinforcement on the backfill of integral bridge abutments", Buildings, 13(4), 853. https://doi.org/10.3390/buildings13040853.
  19. Fernandes, R.R., Tamijani, A.Y. and Al-Haik, M. (2021), "Mechanical characterization of additively manufactured fiber-reinforced composites", Aerosp. Sci. Tech., 113, 106653. https://doi.org/10.1016/j.ast.2021.106653.
  20. Fu, T., Wu, X., Xiao, Z. and Chen, Z. (2020), "Thermoacoustic response of porous FGM cylindrical shell surround by elastic foundation subjected to nonlinear thermal loading", Thin-Wall. Struct., 156, 106996. https://doi.org/10.1016/j.tws.2020.106996.
  21. Ghorbanpour Arani, A. and Zamani, M. (2019), "Investigation of electric field effect on size-dependent bending analysis of functionally graded porous shear and normal deformable sandwich nanoplate on silica Aerogel foundation", J. Sandw. Struct. Mater., 21(8), 2700-2734. https://doi.org/10.1177/1099636217721405.
  22. Ghorbanpour Arani, A. and Zamani, M.H. (2018a), "Bending analysis of agglomerated carbon nanotube-reinforced beam resting on two parameters modified Vlasov model foundation", Indian J. Phys., 92(6), 767-777. https://doi.org/10.1007/s12648-018-1162-z.
  23. Ghorbanpour Arani, A., BabaAkbar-Zarei, H., Pourmousa, P. and Eskandari, M. (2018b), "Investigation of free vibration response of smart sandwich micro-beam on winkler-pasternak substrate exposed to multi physical fields", Microsyst. Tech., 24(7), 3045-3060. https://doi.org/10.1007/s00542-017-3681-5.
  24. Hellal, H., Bourada, M., Hebali, H., Bourada, F., Tounsi, A., Bousahla, A.A. and Mahmoud, S. (2019), "Dynamic and stability analysis of functionally graded material sandwich plates in hygro-thermal environment using a simple higher shear deformation theory", J. Sandw. Struct. Mater., 109963621984584. https://doi.org/10.1177/1099636219845841.
  25. Hong, Y., Yao, M. and Wang, L. (2023), "A multi-axial bounding surface p-y model with application in analyzing pile responses under multi-directional lateral cycling", Comp. Geotech., 157, 105301. https://doi.org/10.1016/j.compgeo.2023.105301.
  26. Ikbarieh, A., Izadifar, M., Abu-Farsakh, M.Y. and Voyiadjis, G.Z. (2023), "A parametric study of embankment supported by geosynthetic reinforced load transfer platform and timber piles tip on sand", Transport. Geotech., 38, 100901. https://doi.org/10.1016/j.trgeo.2022.100901.
  27. Izadifar, M., Luo, N., Abu-Farsakh, M.Y. and Chen, S. (2023), "Performance evaluation of design methods for geosynthetic-reinforced pile-supported embankments", Transport. Res. Rec., 1-17. https://doi.org/DOI: 10.1177/03611981231165994.
  28. Izadifar, M., Mousavi, H., Zadehmohamad, M. and Mir Mohammad Hosseini, S.M. (2021), "Evaluating the isolation effect of the soil-rubber mixture (SRM) around buried pipes during ground vibrations", 7th International Conference on Civil Engineering, Architecture and Urban Planning, Tehran, December.
  29. Jouneghani, F. Z., Dimitri, R. and Tornabene, F. (2018), "Structural response of porous FG nanobeams under hygro-thermo-mechanical loadings", Compos. Part B: Eng., 152, 71-78. https://doi.org/10.1016/j.compositesb.2018.06.023.
  30. Kar, V.R. and Panda, S.K. (2017), "Large-amplitude vibration of functionally graded doubly-curved panels under heat conduction", AIAA J., 55(12), 4376-4386. https://doi.org/10.2514/1.J055878.
  31. Karakoti, A., Pandey, S. and Kar, V.R. (2021), "Dynamic responses analysis of P and S-FGM sandwich cylindrical shell panels using a new layerwise method", Struct. Eng. Mech., 80(4), 417-432. https://doi.org/10.12989/sem.2021.80.4.417.
  32. Karakoti, A., Pandey, S. and Kar, V.R. (2022), "Nonlinear transient analysis of porous P-FGM and S-FGM sandwich plates and shell panels under blast loading and thermal environment", Thin-Wall. Struct., 173, 108985. https://doi.org/10.1016/j.tws.2022.108985.
  33. Karakoti, A., Podishetty, M., Pandey, S. and Kar, V.R. (2023), "Effect of porosity and skew edges on transient response of functionally graded sandwich plates", J. Strain Anal. Eng. D., 58(1), 38-55. https://doi.org/10.1177/03093247211062694.
  34. Khatir, S., Tiachacht, S., Le Thanh, C., Ghandourah, E., Mirjalili, S. and Abdel Wahab, M. (2021), "An improved artificial neural network using arithmetic optimization algorithm for damage assessment in FGM composite plates", Compos. Struct., 273, 114287. https://doi.org/10.1016/j.compstruct.2021.114287.
  35. Khatir, S., Tiachacht, S., Thanh, C.-L., Bui, T.Q. and Abdel Wahab, M. (2019), "Damage assessment in composite laminates using ANN-PSO-IGA and Cornwell indicator", Compos. Struct., 230, 111509. https://doi.org/10.1016/j.compstruct.2019.111509.
  36. Khoddami Maraghi, Z., Amir, S. and Arshid, E. (2022), "On the natural frequencies of smart circular plates with magnetorheological fluid core embedded between magnetostrictive patches on Kerr elastic substance", Mech. Based D. Struct. Mach., 1-18. https://doi.org/10.1080/15397734.2022.2156885.
  37. Khoei, A.R., Youzi, M. and Eshlaghi, G.T. (2022), "Mechanical properties and γ/γ' interfacial misfit network evolution: A study towards the creep behavior of Ni-based single crystal superalloys", Mech. Mater., 171, 104368. https://doi.org/10.1016/j.mechmat.2022.104368.
  38. Khorasani, M., Elahi, H., Eugeni, M., Lampani, L. and Civalek, O. (2022), "Vibration of FG Porous Three-Layered Beams Equipped by Agglomerated Nanocomposite Patches Resting on Vlasov's Foundation", Transp. Porous Media, 142(1-2), 157-186. https://doi.org/10.1007/s11242-021-01658-3.
  39. Khorasani, M., Eyvazian, A., Karbon, M., Tounsi, A., Lampani, L. and Sebaey, T.A. (2020), "Magneto-electro-elastic vibration analysis of modified couple stress-based three-layered micro rectangular plates exposed to multi-physical fields considering the flexoelectricity effects", Smart Struct. Syst., 26(3), 331-343. https://doi.org/http://dx.doi.org/10.12989/sss.2020.26.3.331.
  40. Khorasani, M., Soleimani-Javid, Z., Arshid, E., Lampani, L. and Civalek, O. (2021a), "Thermo-elastic buckling of honeycomb micro plates integrated with FG-GNPs reinforced Epoxy skins with stretching effect", Compos. Struct., 258, 113430. https://doi.org/10.1016/j.compstruct.2020.113430.
  41. Khorasani, M., Lampani, L., Dimitri, R. and Tornabene, F. (2021b), "Thermomechanical buckling analysis of the E&P-FGM beams integrated by nanocomposite supports immersed in a hygrothermal environment", Molecules, 26(21), 6594. https://doi.org/10.3390/molecules26216594.
  42. Kianezhad, M., Youzi, M., Vaezi, M. and Nejat Pishkenari, H. (2023), "Unidirectional motion of C60-based nanovehicles using hybrid substrates with temperature gradient", Sci. Rep., 13(1), 1100. https://doi.org/10.1038/s41598-023-28245-4.
  43. Kumar, S. and Renji, K. (2019), "Estimation of strains in composite honeycomb sandwich panels subjected to low frequency diffused acoustic field", J. Sound Vib., 449, 84-97. https://doi.org/10.1016/j.jsv.2019.02.013.
  44. Joshi, K.K., Kar, V.R. and Thomas, B. (2022), "Higher-order finite element solution of graphene platelets reinforced nanocomposite curved panels with uniform/non-uniform porosity", Mech. Based D. Struct. Mach., 1-20. https://doi.org/10.1080/15397734.2022.2104311.
  45. Leclaire, P., Horoshenkov, K.V. and Cummings, A. (2001), "Transverse vibrations of a thin rectangular porous plate saturated by a fluid", J. Sound Vib., 247(1), 1-18. https://doi.org/10.1006/jsvi.2001.3656.
  46. Lei, J., Hu, J. and Liu, Z. (2013), "Mechanical properties of silica aerogel - A molecular dynamics study", The 2013 World Congress on Advances in Structural Engineering and Mechanics(ASEM13), Jeju, September.
  47. Li, D., Luo, L., Zhu, J., Qin, H., Liu, P., Sun, Z., Lei, Y. and Jiang, M. (2022), "A hybrid lithium sulfonated polyoxadiazole derived single-ion conducting gel polymer electrolyte enabled effective suppression of dendritic lithium growth", Chinese Chem. Lett., 33(2), 1025-1031. https://doi.org/10.1016/j.cclet.2021.07.021.
  48. Li, J., Li, W., Rao, Y., Shi, F., Yu, S., Yang, H., Min, L. and Yang, Z. (2021), "Synthesis of highly ordered AgNPs-coated silica photonic crystal beads for sensitive and reproducible 3D SERS substrates", Chinese Chem. Lett., 32(1), 150-153. https://doi.org/10.1016/j.cclet.2020.10.043.
  49. Mahapatra, T.R., Panda, S.K. and Kar, V.R. (2016), "Nonlinear hygro-thermo-elastic vibration analysis of doubly curved composite shell panel using finite element micromechanical model", Mech. Adv. Mater. Struct., 23(11), 1343-1359. https://doi.org/10.1080/15376494.2015.1085606.
  50. Moradi-Dastjerdi, R., Behdinan, K., Safaei, B. and Qin, Z. (2020), "Static performance of agglomerated CNT-reinforced porous plates bonded with piezoceramic faces", Int. J. Mech. Sci., 188, 105966. https://doi.org/10.1016/j.ijmecsci.2020.105966.
  51. Navarro, P., Abrate, S., Aubry, J., Marguet, S. and Ferrero, J.-F. (2013), "Analytical modeling of indentation of composite sandwich beam", Compos. Struct., 100, 79-88. https://doi.org/10.1016/j.compstruct.2012.12.017.
  52. Pagani, A., Boscolo, M., Banerjee, J.R. and Carrera, E. (2013), "Exact dynamic stiffness elements based on one-dimensional higher-order theories for free vibration analysis of solid and Thin-Wall. Struct.", J. Sound Vib., 332(23), 6104-6127. https://doi.org/10.1016/j.jsv.2013.06.023.
  53. Phung-Van, P., Thai, C.H., Ferreira, A.J.M. and Rabczuk, T. (2020), "Isogeometric nonlinear transient analysis of porous FGM plates subjected to hygro-thermo-mechanical loads", Thin-Wall. Struct., 148(February), 106497. https://doi.org/10.1016/j.tws.2019.106497.
  54. Qaderi, S. and Ebrahimi, F. (2020), "Vibration analysis of polymer composite plates reinforced with graphene platelets resting on two-parameter viscoelastic foundation", Eng. Comp., 38, 419-435. https://doi.org/10.1007/s00366-020-01066-z.
  55. Ramji, K., Kar, V.R., Panda, S.K., & Pandey, H.K. (2018), "Numerical study of temperature dependent eigenfrequency responses of tilted functionally graded shallow shell structures", Struct. Eng. Mech., Int. J., 68(5), 527-536.
  56. Seyfi, A., Teimouri, A., Dimitri, R. and Tornabene, F. (2022), "Dispersion of elastic waves in functionally graded CNTs-reinforced composite beams", Appl. Sci., 12(8), 3852. https://doi.org/10.3390/app12083852.
  57. Seyfi, A., Teimouri, A. and Ebrahimi, F. (2021), "Scale-dependent torsional vibration response of non-circular nanoscale auxetic rods", Waves Random Complex Media, 1-17. https://doi.org/10.1080/17455030.2021.1990441
  58. Shao, Z., Zhai, Q., Han, Z. and Guan, X. (2023), "A linear AC unit commitment formulation: An application of data-driven linear power flow model", Int. J. Elect. Power Energ. Syst., 145, 108673. https://doi.org/10.1016/j.ijepes.2022.108673.
  59. Sharma, A.K., Sharma, P., Chauhan, P.S. and Bhadoria, S.S. (2018), "Study on harmonic analysis of functionally graded plates using FEM", Int. J. Appl. Mech. Eng., 23(4), 941-961. https://doi.org/10.2478/ijame-2018-0053.
  60. Soleimani-Javid, Z., Arshid, E., Khorasani, M., Amir, S. and Tounsi, A. (2021), "Size-dependent flexoelectricity-based vibration characteristics of honeycomb sandwich plates with various boundary conditions", Adv. Nano Res., 10(5), 449-460. https://doi.org/https://doi.org/10.12989/anr.2021.10.5.449.
  61. Soleimani-Javid, Z., Arshid, E., Amir, S. and Bodaghi, M. (2022), "On the higher-order thermal vibrations of FG saturated porous cylindrical micro-shells integrated with nanocomposite skins in viscoelastic medium", Defence Tech., 18(8), 1416-1434. https://doi.org/10.1016/j.dt.2021.07.007.
  62. Takahashi, D. and Tanaka, M. (2002), "Flexural vibration of perforated plates and porous elastic materials under acoustic loading", J. Acoust. Soc. America, 112(4), 1456-1464. https://doi.org/10.1121/1.1497624.
  63. Tang, Y. and Ding, Q. (2019), "Nonlinear vibration analysis of a bi-directional functionally graded beam under hygro-thermal loads", Compos. Struct., 225(May), 111076. https://doi.org/10.1016/j.compstruct.2019.111076.
  64. Teimouri, A., Barbaz Isfahani, R., Saber-Samandari, S. and Salehi, M. (2022), "Experimental and numerical investigation on the effect of core-shell microcapsule sizes on mechanical properties of microcapsule-based polymers", J. Compos. Mater., 56(18), 2879-2894. https://doi.org/10.1177/00219983221107831.
  65. Thanh, C.L., Nguyen, T.N., Vu, T.H., Khatir, S. and Abdel Wahab, M. (2022), "A geometrically nonlinear size-dependent hypothesis for porous functionally graded micro-plate", Eng. Comp., 38(S1), 449-460. https://doi.org/10.1007/s00366-020-01154-0.
  66. Thanh, C.-L., Tran, L.V., Bui, T.Q., Nguyen, H.X. and Abdel-Wahab, M. (2019), "Isogeometric analysis for size-dependent nonlinear thermal stability of porous FG microplates", Compos. Struct., 221(April), 110838. https://doi.org/10.1016/j.compstruct.2019.04.010.
  67. Torabipour, A., Asghari, N., Haghighi, H., Yaghoubi, S. and Urgessa, G. (2023), "Assessing effectiveness of shape memory alloys on the response of bolted T-stub connections subjected to cyclic loading", Civil Eng., 4(1), 105-133. https://doi.org/10.3390/civileng4010008.
  68. Tran-Ngoc, H., Khatir, S., Ho-Khac, H., De Roeck, G., Bui-Tien, T. and Abdel Wahab, M. (2021), "Efficient artificial neural networks based on a hybrid metaheuristic optimization algorithm for damage detection in laminated composite structures", Compos. Struct., 262, 113339. https://doi.org/10.1016/j.compstruct.2020.113339.
  69. Vallabhan, C.V.G., Straughan, W.T. and Das, Y.C. (1991), "Refined model for analysis of plates on elastic foundation", J. Eng. Mech., 117(12), 2830-2843. https://doi.org/10.1061/(ASCE)0733-9399(1991)117:12(2830).
  70. Vosoughkhosravi, S., Dixon-Grasso, L. and Jafari, A. (2022), "The impact of LEED certification on energy performance and occupant satisfaction: A case study of residential college buildings", J. of Build. Eng., 59, 105097. https://doi.org/10.1016/j.jobe.2022.105097.
  71. Vosoughkhosravi, S. and Jafari, A. (2022), "Developing a conceptual passive contact tracing system for commercial buildings using WiFi indoor positioning", Sust., 14(16), 10255. https://doi.org/10.3390/su141610255.
  72. Wang, P., Huo, J., Dehini, R. and Forsat, M. (2021), "Buckling of functionally graded nonuniform and imperfect nanotube using higher order theory", Waves Random Complex Media, 1-24. https://doi.org/10.1080/17455030.2021.1892864.
  73. Xie, L., Zhu, Y., Yin, M., Wang, Z., Ou, D., Zheng, H., Liu, H. and Yin, G. (2022), "Self-feature-based point cloud registration method with a novel convolutional Siamese point net for optical measurement of blade profile", Mech. Syst. Signal Process., 178, 109243. https://doi.org/10.1016/j.ymssp.2022.109243.
  74. Yaghoobi, H. and Taheri, F. (2020), "Analytical solution and statistical analysis of buckling capacity of sandwich plates with uniform and non-uniform porous-cellular core reinforced with graphene nanoplatelets", Compos. Struct., 112700. https://doi.org/10.1016/j.compstruct.2020.112700.
  75. Yang, J., Liew, K.M. and Kitipornchai, S. (2004), "Dynamic stability of laminated FGM plates based on higher-order shear deformation theory", Comput. Mech., 33(4), 305-315. https://doi.org/10.1007/s00466-003-0533-1.
  76. Yas, M.H. and Rahimi, S. (2020), "Thermal vibration of functionally graded porous nanocomposite beams reinforced by graphene platelets", Appl. Math. Mech., 41(8), 1209-1226. https://doi.org/10.1007/s10483-020-2634-6.
  77. Yin, M., Zhu, Y., Yin, G., Fu, G. and Xie, L. (2022), "Deep feature interaction network for point cloud registration, with applications to optical measurement of blade profiles", IEEE Transactions Indust. Info., 1-10. https://doi.org/10.1109/TII.2022.3220889.
  78. Zenzen, R., Khatir, S., Belaidi, I., Le Thanh, C. and Abdel Wahab, M. (2020), "A modified transmissibility indicator and artificial neural network for damage identification and quantification in laminated composite structures", Compos. Struct., 248, 112497. https://doi.org/10.1016/j.compstruct.2020.112497.
  79. Zhang, Y., Liu, G., Ye, J. and Lin, Y. (2022), "Crushing and parametric studies of polygonal substructures based hierarchical cellular honeycombs with non-uniform wall thickness", Compos. Struct., 299, 116087. https://doi.org/10.1016/j.compstruct.2022.116087.
  80. Zhang, L.H., Lai, S.K., Wang, C. and Yang, J. (2021), "DSC regularized Dirac-delta method for dynamic analysis of FG graphene platelet-reinforced porous beams on elastic foundation under a moving load", Compos. Struct., 255, 112865. https://doi.org/10.1016/j.compstruct.2020.112865.