論 文

Effect of Laser Pulse Shaping on Reduction in Defects of Stainless Steel Spot Weld Metals

Jong-Do Kim* · Seiji Katayama

스텐레스 강 용접부에 형성되는 결함의 저감에 미치는 레이저 펔스 파형의 영향

김 종 도·카따야마 세이지

Abstract

- 1. Introduction
- 2. Materials and Experimental Procedure
- 3. Experimental Results and Discussion
 - 3.1 Characteristics of laser spot weld defects
- 3.2 Conditions of porosity formation

- 3.3 Effect of pulse shape on prevention of porosity
- 3.4 Fusion and solidification behavior of molten puddle
- 3.5 Effect of pulse shaping on reduction in solidification cracking
- 4. Conclusions

References

Abstract

This paper describes the effectiveness of laser pulse shaping in eliminating weld defects such as porosity, cracks and undercuts in pulsed Nd:YAG Laser welding. A large porosity was formed in a keyhole mode of deep penetration weld metal of any stainless steel. Solidification cracks were present in Type 310S with above 0.017%P and undercuts were formed in Type 303 with about 0.3%s. The conditions for the formation of porosity were determined in further detail in Type 316. With the objectives of obtaining a fundamental knowledge of formation and prevention of weld defects, the fusion and solidification behavior of a molten puddle was observed during laser spot welding of Type 310S

^{*} Joining and Welding Research Institute, Osaka University(Appled High temperature Engineering Course) 11-1 Mihogaoka, Ibaraki, Osaka 567, Japan

through high speed video photographing technique. It was deduced that cellular dendrite tips grew rapidly from the bottom to the surface, and consequently residual liquid remained at the grain boundaries in wide regions and enhanced the solidification cracking susceptibility. Several laser pulse shapes were investigated and optimum pulse shapes were proposed for the reduction and prevention of porosity and solidification cracking.

1. Introduction

Laser is a heat source with high power density, and laser welding is receiving a great attention as a high precision, high performance, good flexibility and high speed welding process. Recently, high power Nd:YAG laser apparatuses, such as 800 W pulsed laser with sing rod, about 2 kW cascade type CW laser, 3 kW cascade type pulsed laser and 3 kW laser with 3 coupled beams of 1 kW pulsed laser, were developed1-3). Also, pulse shapable Nd:YAG laser were developed4).

Kim and others5-7) have performed a series of studies to clarify the weldability of various alloys and to establish optimum pulse shapes for the production of laser welds without defects using a special pulse-shapable Nd:YAG laser apparatus. This study was undertaken to obtain a basic knowledge of pulsed laser welding of stainless steels and related problems. First the kind and formation conditions of porosity and hot(solidification) cracking were investigated in Type 316 and 310S, respectively. Also, fusion and solidification phenomenon of a molten puddle was observed with high speed photographing technique. From these results, optimum pulse shapes for the reduction in porosity and solidification cracking were proposed.

2. Materials and Experimental Procedure

The materials used are various kinds of commercially available stainless steels and experimental Fe-Cr-Ni ternary alloys. The chemical compositions of commercial steels used are shown in Table 1. Type (AISI; SUS: according to Japanese Industrial Standard) 316 and 310S plates of 5 mm(Table) thickness are mainly employed in this investigation. The surface of each plate was polished by #400 Emery paper and cleansed with Acetone before laser welding.

Table 1. The chemical compositions of commercial steels used

Materials (SUS, AISI)	Compositions (mass%)								Creq	Nieg
	С	Si	Mn	P	S	Cr	Ni	Other	(%)	(%)
Type 310S (A)	0.063	0.39	1.68	0.027	0.007	24.35	20.26		24.94	22.99
Type 310S (B)	0.078	0.93	1.56	0.021	0.007	25.06	20.30	0.1Mo	26.56	23.42
Type 310S (C)	0.07	0.61	1.69	0.017	0.002	25.02	19.16		25.94	22.11
Type 310S (D)	0.05	0.75	1.19	0.013	0.001	25.02	19.20		26.15	21.30
Турс 316 (А)	0.078	0.53	1.29	0.032	0.013	17.04	11.03	2.27Mo	20.11	14.02
Type 316 (B)	0.05	0.69	1.06	0.031	0.006	16.96	10.38	2.21Mo	20.21	12.41
Type 316 (C)	0.05	0.92	1.40	0.030	0.009	17.43	12.01	2.53Mo	21.34	14.21
Туре 304	0.07	0.45	0.82	0.025	0.005	18.16	8.63		18.84	11.14
Type 309S	0.06	0.76	1.62	0.031	0.002	22.16	14.16	_	23.30	16.77
Type 321	0.05	0.89	1.19	0.029	0.011	17.47	9.43	_	18.80	11.53
Туре 347	0.04	0.61	1.26	0.026	0.007	18.18	9.69	0.62Nb	19.40	11.52
Туре 303	0.05	0.32	1.96	0.024	0.332	18.18	9.69	0.20Мо	18.86	12.17
Туре 329Л1	0.02	0.51	0.35	0.029	0.001	24.70	5.35	1.77 M o	27.24	6.2+
Турс 430	0.06	0.56	0.56	0.028	0.005	16.49	_	_	17.33	2.08
Туре 630	0.05	0.25	0.82	0.024	0.014	15.94	4.56	3.33Cu	16.57	6.5+

The laser apparatus is Miyachitechnos' pulsed Nd:YAG laser, which can control a pulse shape of laser output power. The pulse duration of laser power can be varied from about 2 to 20 ms , and the pulse duration is divided into 20 equal segmental periods. 7 levels of lamp voltages are

selected from 0 to 495 V for each segmental periods. A laser beam is delivered through GI fiber of 0.8 mm diameter and is focused by a quartz lens of 150 mm focal length.

Laser spot welding was conducted in argon atmosphere under various irradiation conditions. The presence of cracks and porosity was examined in the surfaces and polished cross sections.

Fusion and solidification behavior during laser spot welding was observed by color high speed video camera of 1,000 frames per second. Fig.1 shows the schematic arrangement for (Fig.1) observation of fusion and solidification behavior.

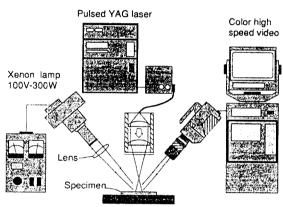


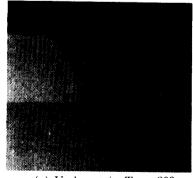
Fig. 1 Schematic arrangement of high speed video photography for observation of fusion and solidification phenomenon occurring laser spot welding.


Experimental Results and Discussion

3.1 Characteristics of laser spot weld defects

Laser spot welding was performed on each shapes of 5ms duration. Large pores are observed commercially available stainless steel plate Fig.2 shows characteristic weld defects in Type 310S and 303 plates subjected to rectangular pulse in the central or lower part of deeply-penetrated

weld fusion zones, as seen in Fig.2 (a) and (c). It was thus found that porosities were easily formed in a key hole mode of deep penetration weld fusion zones of all stainless steels.


Solidification cracks were present in laser spot weld metals of Type 310S with 0.017%P or more seen in fig.2 (b). On the other hand, no cracks were detected in weld metals of Type 310S with 0.013%P and 0.001%S, Type 303 with 0.33%S and Type 630 with 3.3%Cu which are sometimes accepted to be susceptible to cracking.

(a) Porosity

(b) Solidification crack in Type 310S

(c) Undercut in Type 303

Fig. 2 Typical weld defects observed in pulsedlaser-welded stainless steels.

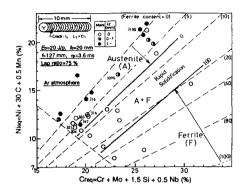


Fig. 3 Crack lengths for various stainless steels subjected to laser-overlapped welding show in the Schaeffer diagram.

Fig.3 shows the level of crack lengths for various stainless steels subjected to pulsed laser(Fig.3) overlapped (seam) welding (using another laser apparatus with normal pulse shapes), projected in the Schaeffer diagram. The ranges fully austenitic and ferritic microstructure at room temperature are widened and that of austenitic + ferritic microstructure is narrowed in pulsed laser weld metals due to rapid solidification and quenching in comparison with the Schaeffer diagram. It is seen that cracks occurred in the weld metals (of Type 316, 309S, etc) containing less than 5% ferrite in the Schaeffer diagram. The weld metals in which cracking takes place are presumed to solidify as primary austenite phase during rapid solidification. Cracks were also found in Type 347, probably because Nb (Cb) might segregate to a higher degree to lower the solidification temperature due to the formation of a large content of austenite during rapid solidification process. It is concluded that solidification cracking may occur extremely easily in the weld metals of austenitic single-phase solidification with normally commercial or higher levels of impurity elements.

Moreover, it was revealed that Type 303 are very sensitive to undercuts in both shallow and deep weld metals, as observed in Fig.2 (c) This occurrence may be interpreted in terms of the effect of surface tension due to a high level of S content: however, the real cause of undercut formation is not clear at the present. More work will be needed to clarify the undercut phenomenon in laser welded Type 303.

3.2 Conditions of porosity formation

The influences of welding conditions and weld fusion zone geometries were investigated by irradiating SUS 316 plate with a pulsed laser in 2the rectangular output shape. Fig.4 indicates schematically the shape and location of porosity in weld metals exposed to laser beams with different pulse durations at various defocused distances. Porosities were found in the shallow and deep weld metals made at high power densities due to short defocused distances and in a keyhole mode of deep penetration weld metals.

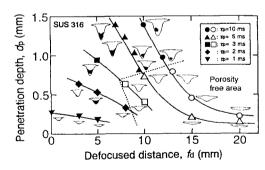


Fig. 4 Effect of penetration depths of weld metals, defocused distance and pulsed length on porosity formation and location in laser spot weld fusion zones.

It is therefore presumed that the formation of porosities has a close correlation with the collapse of a key hole (cavity or beam hole) just after the laser irradiation termination. That is, (1) the keyhole in the liquid metal is hydrodynamically unstable, (2) the keyhole collapses drastically due to rapid reduction in the laser power(density) because of the rectangular pulse shape, (3) the liquid in the upper part of molten puddle flows down to cover the keyhole, (4) the lower part of keyhole can not be filled up by the liquid, resulting in the formation of a bubble, (5) the upper part of liquid solidifies to prevent the bubble from flowing up, and then (6) the bubble remains as a porosity or pore in the weld fusion zone. Accordingly, in the case of short pulse duration at high power density, a narrow cavity(kevhole) must have been formed in the shallow fusion zone.

3.3 Effect of pulse shape on prevention of porosity

The presence or absence of porosity was examined by irradiating Type 316 plates with pulse shape laser beams under various combinations of tailing powers and additional periods, fig.5 shows the measured output power shapes of pulsed laser, indicating the addition of lower(about 4.5kW) power for 2,4 and 6 ms after 5kW level of about 5 ms duration. A slow increase in laser power at the beginning is employed to reduce spattering. Fig. 6 exhibits the cross sections of Type 316 laser welds produced by the selected power densities shown in Fig.5 The porosity is located in the upper part as the additional pulse period as longer and no porosity is seen in deeply-penetrated weld metal at the pulse duration of 16ms. On the other hand, when the levels of additional tailing powers were not appropriate, porosities could not be eliminated.

From such experimental results, it was revealed that keyhole of deep penetration weld

metals without porosity could be produced under the proper addition of tailing power by pulse shapable laser apparatus. Such similar tendency is recognized in aluminum alloys8), although the optimum pulsed laser power shapes are different between stainless steels and aluminum alloys.

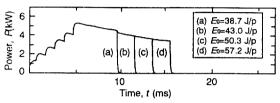


Fig. 5 Controlled power shapes of pulsed laser in 4.5kW tailing shape for 2,4 and 6 ms after 5kW standard pulse for 10 ms

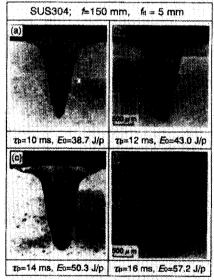


Fig. 6 Cross-sectional macrostructures of Type 316 welds produced at various controlled pulse power shapes.

3.4 Fusion and solidification behavior of molten puddle

Fusion and solidification behavior on the surface of molten puddle was observed in pulsed-laser-welded Type 310s by high speed

video camera. The photos demonstrating the variation in the molten pool under the conditions of τ p=5 ms and f d=15 mm are shown in Fig. 7. The generation of plasma plume and the behavior of solidification on the spot weld surface are seen between 3 and 4 ms and between 6 and 13 m, respectively. such observation suggests that the temperature of the central surface part of a molten puddle was raised up to the boiling temperature during welding even in the case of shallow weld fusion zone.

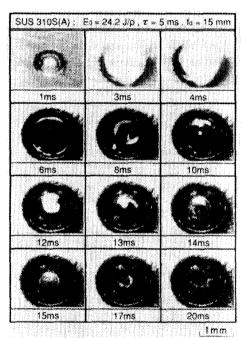


Fig. 7 High speed video pictures showing fusion and solidification behavor during pulsed laser welding of Type 310S

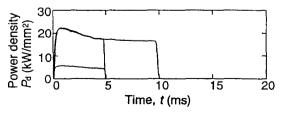


Fig. 8 Three kides of output power density shapes of pulsed laser used for video observation.

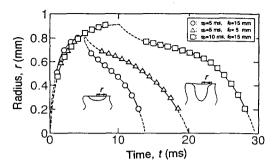


Fig. 9 Variation in radius of laser weld molten puddle of Type 310S as function of time.

Three pulse shape of laser power densities used are shown in Fig8, and the variations in the radii of spot weld fusion zones during and after laser irradiation under three different pulse conditions are indicated as a function of time in Fig 9. In the case of τ p=5 ms and f d=15 mm cellular dendrite tips solidify so rapidly as to reach the center of weld nugget surface within about 10ms after the termination of laser irradiation. As the power density is higher the time required to complete the solidification at the central-upper part of a spot weld metal is longer because the deeper weld fusion zone is formed. When the pulse duration is increased, the solidification time is longer due to the increase in the absorbed heat input. The formation of keyhole could not be observed just after the laser irradiation termination. Therefore, it is presumed that the keyhole after laser shot collapses so suddenly and quickly that the deeply penetrated weld metal is liable to form porosity.

3.5 Effect of pulse shaping on reduction in solidification cracking

Based on solidification cracking mechanism in pulsed laser weld metal, the procedure of heat

input control to suppress the rapid growth rate of cellular dendrite tips, to narrow the mushy zone or region with residual liquid along grain boundaries and to advance solidification in the peripheral parts of a weld fusion zone more smoothly should be adopted to reduce cracking.

Therefore, a laser beam with the tailing low power or subsequent pulsed laser power, which are shown in Fig.10 and Fig.11, was irradiated on Type 310S plate containing 0.021%P and 0.007%S with the objectives of eliminating cracking in a heat-conduction mode of shallow weld metal or a keyhole mode of deep weld metal. The photos of spot welds are shown in Fig.12 and Fig.13. Compared with Fig.2(b) the proper tailing of low power is readily judged to be effective to the reduction in cracking, as shown in Fig 12. Also by comparison in Fig.13 the second additional pulse irradiation with lower energy after the main pulse shot appears to exert a beneficial effect on the drastic decrease in large solidification cracks occurring near the fusion boundaries in the upper part if the additional irradiation can be carried out after the peripheral parts near the fusion boundaries have solidified and before the central parts have solidified This also suggests that laser overlapped(seam) welding at the controlled proper repetition rate may be effective to the reduction or prevention of cracking. Therefore the minimization of solidification cracking is feasible by controlling a pulse shape (and repetition rate) in laser welding. The combination of the first pulse-shape laser with such an effective tailing power as to prevent porosity as shown in Fig. 5 and the second pulsed laser or relatively lower power will be beneficial to the reduction or prevention of both porosities and

cracks in pulsed laser weld fusion zones.

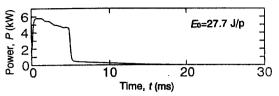


Fig. 10 Output power shape of pulsed YAG laser with tailing of low power, used for heat-conduction mode of spot weld metal.

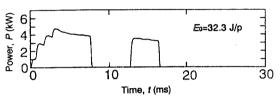


Fig. 11 Output power shape of pulsed YAG laser controlled for redusing cracking, showing second pulse after main laser shot.

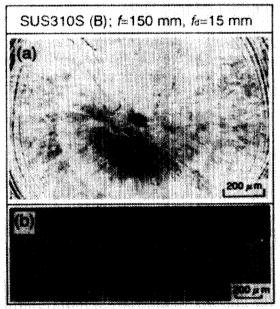
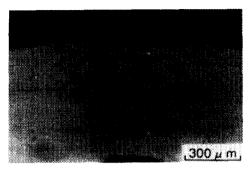
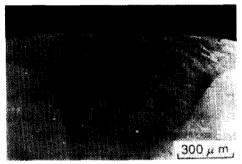




Fig.12 Surface and cross-sectional macrostructuer of Type 310S produced with pulsed laser in taling power shape.

(a) One pulse shot

(b) Controlled pulses

Fig.13 Cross-sectional microstructures of laser-welded Type 310S, showing effect of second shot of controllde pulse shape on reduction in cracking.

4. Conclusions

- Porosities were liable to be formed in a keyhole mode of deep penetration spot weld metals of all stainless steels subjected to a laser beam with a rectangular pulse shape.
- 2) Solidification cracks were present along grain boundaries in the weld fusion zones of Type 310S and other stainless steel with commercial or higher levers of P content which solidified as primary austenite phase.
- Undercuts were formed in the spot weld metals of Type 303 with a considerable content of S.
- 4) The formation of a porosity was interpreted in terms of sudden collapse of the cavity of

- keyhole and rapid solidification so as to trap a pore.
- 5) A keyhole mode of deep penetration weld metals without porosity could be produced under the proper addition of tailing power by pulse shapable laser apparatus.
- 6) On the basis of high speed video observation of a fusion and solidification behavior, it was deduced that cellular dendrite tips grew rapidly from the bottom to the surface, and consequently residual liquid remained at grain boundaries in wide regions, which enhanced the susceptibility to solidification cracking.
- Pulse shapes of laser powers proper for minimizing solidification cracking in Type 310S weld metal were proposed, and the effect was confirmed.

References

- K. Haruta and Y. Terashi: "High Power Pulse YAG Laser Welding of Thin Plate", Proc, of LAMP'92(1992/June) Nagaoka Japan, High Temperature Soc. of Japan, pp. 499-504.
- K Okino, T Sakurai and H. Takenaka.
 "1.8kW CW Nd:YAG Laser Application", Proc ICALEO'89(1989/Nov.) Orlando USA, Laser Institute of America Vol 69, pp.26.
- 3) I. Norris, T. Houle, C. Peter and P. Wileman: "Material Processing with a 3 kW YAG Laser Proc. of LAMP'92(1992/June) Nagaoka Japan, High Temperature Soc. of. Japan, pp 489-494.
- 4) T. M. W. Weedon: "Nd-YAG Laser with Controlled Pulse Shape", Proc. of LAMP'87(1987/May) Osaka Japan, High Temperature Soc. of . Japan, pp 75-80.
- 5) J. D. Kim, S. Katayama and A. Matsunawa: "Formation Mechanism and Prevention of Defects in Laser Welding (Report 1) - Effects of Pulse on Keyhole Behavior-", Preprints of

- the National Meeting of Japan Welding Society Vol.59(1996)pp. 74-75.
- S. Katayama, J. D. Kim and A. Matusunawa "YAG Laser welding phenomenon", Proceeding of 40th Laser Material Processing conference, Osaka Japan, March 13-14 (1997)pp. 21-31.
- 7) J. D. Kim and A. Matsunawa: "Observation of Laser Welding Phenomena with High
- Temporal Resolution", Reports on Topical Meeting of the Laser Society of Japan-Laser Processing-, No RTM-97-13(1997)pp. 19-26.
- 8) A. Matsunawa, S. Katayama , M. Mizutani, H. Ikeda and K. Nishizawa : "Fusion and Solidification Characteristics in Pulse-Shaped YAG Laser Welding", Proc. 5th CISFFEL(1993/June) France, pp. 219-226.