Kim Jae Hwan;Lee Eui Bae;Kim Yong Sun;Kim Yong Duk;Joo Ji Hyun;Kim Moo Han
Proceedings of the Korea Concrete Institute Conference
/
2004.05a
/
pp.276-279
/
2004
Concrete is one of the principal materials for the structure and it is widely used all over the world. but it shows extremely brittle failure under bending and tensile load. Recently to improve such a poor property. High Performance Fiber Reinforced Cementitious Composites (HPFRCC) have been developed. and it are defined by an ultimate strength higher than their first cracking strength and the formation of multiple cracking during the inelastic deformation process. This study is to develop the hybrid HPFRCC with high ductility and strain capacity in bending and tensile load. and the three-point bending test on hybrid HPRFCC reinforced with micro and macro fibers is carried out in this paper. As the results of the bending tests. hybrid HPFRCCs reinforced with PVA40+SF and PVA100+PVA660 showed the high ultimate bending stress, multiple cracks and displacement hardening under bending load.
Proceedings of the Korea Concrete Institute Conference
/
2005.11a
/
pp.53-56
/
2005
This paper investigates the effect of ductile deformation behavior of high performance hybrid fiber-reinforced cement composites (HPHFRCCs) on the shear behavior of coupling beams to lateral load reversals. The matrix ductility and the reinforcement layout were the main variables of the tests. Three short coupling beams with two different reinforcement arrangements and matrixes were tested. They were subjected to cyclic loading by a suitable experimental setup. All specimens were characterized by a shear span-depth ratio of 1.0. The reinforcement layouts consisted of a classical scheme and diagonal scheme without confining ties. The effects of matrix ductility on deflections, strains, crack widths, crack patterns, failure modes, and ultimate shear load of coupling beams have been examined. The combination of a ductile cementitious matrix and steel reinforcement is found to result in improved energy dissipation capacity, simplification of reinforcement details, and damage-tolerant inelastic deformation behavior. Test results showed that the HPFRCC coupling beams behaved better than normal reinforced concrete control beams. These results were produced by HPHFRCC's tensile deformation capacity, damage tolerance and tensile strength.
Journal of the Korean Society for Advanced Composite Structures
/
v.6
no.1
/
pp.30-37
/
2015
The need to consider torsion in the design of members of a structure has recently been increasing; therefore, many studies on torsion have been carried out. Recent research was focused on the torsional performance of concrete according to the reinforcing materials used. Of particular interest, are torsion studies of beams made of SFRC(steel fiber reinforced concrete), and there has been increasing use of SFRC at construction sites. In contrast, research on the composite PVA-ECC (polyvinyl alcohol-engineered cementitious composite) has only covered its mechanical performance, though it exhibits excellent tensile-strain performance (better than SFRC). Therefore, research on the torsion of concrete beams retrofitted using PVA-ECC is lacking. In this study, the behavior characteristics and performance of reinforced-concrete beams retrofitted by PVA-ECC was investigated experimentally. The experimental results show that the resistance to torsional cracking is increased by PVA-ECC. In addition, the strain on the rebar of the specimen was found to be reduced.
Park, Wan-Shin;Yun, Hyun-Do;Kim, Sun-Woo;Jean, Esther;Kim, Young-Chul
Proceedings of the Korea Concrete Institute Conference
/
2006.11a
/
pp.257-260
/
2006
Coupled shear walls consist of two or more in-plane walls inter-connected with coupling beams. In order to effectively resist seismic loads, coupling beams must be sufficiently stiff, strong and posses a stable load-deflection hysteretic response. Much of requirements to the civil and building structures have recently been changed in accordance with the social and economic progress. Ductility of high performance fiber reinforced cementitious composites(HPFRCCs), which exhibit strain hardening and multiple crackling characteristics under the uniaxial tensile stress is drastically improved. This paper provides background for design guidelines that include a design model to calculate the shear strength of pseudo strain hardening cementitious composite steel coupling beam.
Kim, Young-Woo;Min, Kyung-Hwan;Yang, Jun-Mo;Yoon, Young-Soo
Proceedings of the Korea Concrete Institute Conference
/
2008.11a
/
pp.753-756
/
2008
HPFRCC (High-Performance Fiber Reinforced Cementitious Composites), which is relatively more ductile and has the characteristic of high toughness with high fiber volume fractions, can be used in structures subjected to extreme loads and exposed to durability problems. In the case of using PVA(polyvinyl alcohol) fibers, it is noted by former studies that around 2% fiber volume fractions contributes to the most effective performance at HPFRCC. In this study, therefore, compressive and flexural tests were implemented to evaluate the compressive and flexural capacities of HPFRCC while the total fiber volume fractions was fixed at 2% and two different PVA fibers were used with variable fiber volume fractions to control the micro-crack and macro-crack with short and long fibers, respectively. Moreover, specimens reinforced with steel and PVA fiber simultaneously were also tested to estimate their behavior and finally find out the optimized mixture. In the result of these experiments, the specimen consists of 1.6% short fibers (REC 15) and 0.4% long fiber (RF4000) outperformed other specimens. When a little steel fibers added to the mixture with 2% PVA fibers, the flexural capacity was increased, however, when high steel fiber volume fractions applied, the flexural capacity was decreased.
Proceedings of the Korea Concrete Institute Conference
/
2008.11a
/
pp.725-728
/
2008
Most of shrinkage is mainly caused by autogenous shrinkage in Ultra high strength steel-fiber reinforced cementitious composites(UHSFRC). water to binder ratio is very low, about 0.2. It occurs faster hydration and cause a large amount of autogenous shrinkage in early ages. the large autogenous shrinkage can cause harmful cracks in a structure and deteriorate the designed structural performance. therefore it is very important to predict the autogenous shrinkage accurately. The study about the autogenous shrinkage of UHSFRC was carried out in this paper. through comparing with JSCE recommendations for UHSFRC, it was found out that UHSFRC in this study showed higher autogenous shrinkage than that of JSCE. And Applicability of early proposed models by some researchers was also investigated. the analytical results let us know that Miyazawa's model showed the best agreement with the experimentally obtained autogenous shrinkage of UHSFRC.
Proceedings of the Korea Concrete Institute Conference
/
2008.11a
/
pp.737-740
/
2008
When UHSFRC is applied to structures, it can be expected that it shows excellent performance in a point of constructability and load capacity. However, its rich mix can cause some problems concerning the long-term behavior such as shrinkage and creep. Therefore it is inevitably needed to investigate its long-term behavior in order to apply it to structures safely. This study is dealing with the drying shrinkage of UHSFRC. UHSFRC shows relatively fast drying shrinkage in the early exposed ages and slow moisture diffusion caused by compact microstructure of the material. It was found that The KCI model to predict the drying shrinkage did not properly represent these properties of UHSFRC. therefore a modified drying shrinkage model applicable to UHSFRC, which has different shrinkage properties from that of normal concrete, was proposed
To overcome weak and brittle tensile characteristics of concrete, many studies have been conducted on fiber reinforced concrete (FRC). Recently, high performance fiber reinforced cementitious composites (HPFRCC), which shows strain hardening behavior, has been actively investigated. However, most of the studies focused on the material behavior of HPFRCC itself. Only a few studies have been conducted on the tensile behavior of HPFRCC with steel reinforcement. Therefore, a tension stiffening test for HPFRCC members has been conducted in this study in order to investigate the effect of a reinforcing bar on the tensile behavior of HPFRCC. Tensile stress-strain relationship of HPFRCC has been derived from the tests. The HPFRCC resisted tensile stress continuously from the first cracking to the yield of reinforcing bar. Through the comparison with the tensile behavior of HPFRCC members without a reinforcement, it was shown the tensile strength and capacity of HPFRCC were reduced due to the combined effect of the high shrinkage of HPFRCC, restraining effect of steel reinforcement, and the strain hardening behavior of HPFRCC. It is expected that the tension stiffening test results can be useful for an application of HPFRCC with steel reinforcement as structural members.
The purpose of this paper is to develop a Hybrid Fiber-reinforced High Strength Lightweight Cementitious Composite (HFSLCC) incorporated with lightweight filler and hybrid fibers for lightness and high ductility. Optimal ingredients and mixture proportion were determined on the basis of the micromechanical analysis and the steady-state cracking theory considering the fracture characteristics of matrix and the interfacial properties between fibers and matrix. Then 4 mixture proportions were determined according to the type and amount of fibers and the experiment was performed to evaluate the mechanical performance of those. The HFSLCC showed 3% of tensile strain, 4.2MPa of ultimate tensile stress, 57MPa of compressive strength and $1,660kg/m^3$ of bulk density. The mechanical performance of HFSLCC incorporated with PVA fibers of 1.0 Vol.% and PE fibers of 0.5 Vol.% is similar to those of the HFSLCC incorporated with fibers of 2.0 Vol.%.
Engineered Cementitious Composite (ECC) is a special class of the new generation of high performance fiber reinforced cementitious composites (HPFRCC) featuring high ductility with relatively low fiber content. In this research, the mechanical performance of ECC beams will be investigated with respect to the effect of slag and aggregate size and amount, by employing nonlinear finite element method. The validity of the models was verified with the experimental results of the ECC beams under monotonic loading. Based on the numerical analysis method, nonlinear parametric study was then conducted to evaluate the influence of the ECC aggregate content (AC), ECC compressive strength ($f_{ECC}$), maximum aggregate size ($D_{max}$) and slag amount (${\phi}$) parameters on the flexural stress, deflection, load and strain of ECC beams. The simulation results indicated that when increase the slag and aggregate size and content no definite trend in flexural strength is observed and the ductility of ECC is negatively influenced by the increase of slag and aggregate size and content. Also, the ECC beams revealed enhancement in terms of flexural stress, strain, and midspan deflection when compared with the reference beam (microsilica MSC), where, the average improvement percentage of the specimens were 61.55%, 725%, and 879%, respectively. These results are quite similar to that of the experimental results, which provides that the finite element model is in accordance with the desirable flexural behaviour of the ECC beams. Furthermore, the proposed models can be used to predict the flexural behaviour of ECC beams with great accuracy.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.