• Title/Summary/Keyword: high peak resistance

Search Result 185, Processing Time 0.02 seconds

Tensile Properties of Hybrid Fiber Reinforced Cement Composite according to the Hooked & Smooth Steel Fiber Blending Ratio and Strain Rate (후크형 및 스무스형 강섬유의 혼합 비율과 변형속도에 따른 하이브리드 섬유보강 시멘트복합체의 인장특성)

  • Son, Min-Jae;Kim, Gyu-Yong;Lee, Sang-Kyu;Kim, Hong-Seop;Nam, Jeong-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.3
    • /
    • pp.31-39
    • /
    • 2021
  • In this study, the fiber blending ratio and strain rate effect on the tensile properties synergy effect of hybrid fiber reinforced cement composite was evaluated. Hooked steel fiber(HSF) and smooth steel fiber(SSF) were used for reinforcing fiber. The fiber blending ratio of HSF+SSF were 1.5+0.5, 1.0+1.0 and 0.5+1.5vol.%. As a results, in the cement composite(HSF2.0) reinforced with HSF, as the strain rate increases, the tensile stress sharply decreased after the peak stress because of the decrease in the number of straightened pull-out fibers by increase of micro cracks in the matrix around HSF. When 0.5 vol.% of SSF was mixed, the micro cracks was effectively controlled at the static rate, but it was not effective in controlling micro cracks and improving the pull-out resistance of HSF at the high rate. On the other hand, the specimen(HSF1.0SSF1.0) in which 1.0vol.% HSF and 1.0vol.% SSF were mixed, each fibers controls against micro and macro cracks, and SSF improves the pull-out resistance of HSF effectively. Thus, the fiber blending effect of the strain capacity and energy absorption capacity was significantly increased at the high rate, and it showed the highest dynamic increase factor of the tensile strength, strain capacity and peak toughness. On the other hand, the incorporation of 1.5 vol.% SSF increases the number of fibers in the matrix and improves the pull-out resistance of HSF, resulting in the highest fiber blending effect of tensile strength and softening toughness. But as a low volume fraction of HSF which controlling macro crack, it was not effective for synergy of strain capacity and peak toughness.

High power X-band SSPA Design using Gysel Power Combiner (Gysel 전력결합기를 이용한 고출력 X-band SSPA 설계)

  • Lee, Sang-Rok;Lim, Eun-Jae;Rhee, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.4
    • /
    • pp.425-432
    • /
    • 2014
  • Necessity of compact X-band solid-state weather radar is required to provide weather data, which generate locally in a lot of Korea's mountainous area, rather than tube-type radar. Solid State Power Amplifier (SSPA) for using Dual-polarization method in weather radar is able to obtain desired high output by combining many low output power devices in parallel. Thus, Power combiner applying to high-output power amplifier has disadvantages such as path loss, ballast resistance problem by high frequency and high power, heat release. Therefore, In this paper we demonstrated the excellence of isolation, which is the result from modified Gysel power combiner. As a result, we designed X-band 250W solid state power amplifier with peak power 54dBm, 25% power efficiency for weather radar.

Effect of Austenitizing Temperature on Secondary Hardening and Impact Toughness in P/M High Speed Vanadium Steel (바나듐 분말 고속도공구강의 이차경화 및 충격인성에 미치는 오스테니타이징 온도의 영향)

  • Moon, H.K.;Yang, H.R.;Cho, K.S.;Lee, K.B.;Kwon, H.
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.8
    • /
    • pp.477-481
    • /
    • 2008
  • The secondary hardening and fracture behavior in P/M high speed steels bearing V content of 9 to 10 wt% have been investigated in terms of austenitizing temperature and precipitation behavior. Austenitizing was conducted at 1,100 and $1,175^{\circ}C$ of relatively low and high temperatures. Coarse primary carbides retained after austenitization were mainly V-rich MC type. They give a significant influence on hardeness and toughness, as well as wear resistance. Tempering was performed in the range of $500{\sim}600^{\circ}C$. The peak hardness resulting from the precipitation of the fine MC secondary carbides was observed near 520, irrespective of austenitizing temperature. Aging acceleration(or deceleration) did not occur with increasing austenitizing temperature because it mainly influences contents of V and C of matrix through the dissloution of coarse primary MC containing lots of V and C. The precipitation of secondary MC carbides, which also contain V and C, did not change the aging kinetics itself. In the 10V alloy containing much higher C content, the impact toughness was lower than 9V alloy, because of the larger amount of primary carbide and high hardness.

A Study of Intrinsic Alpha Rhythm, Electroencephalography, and Heart Rate Variability Index as Indicators of Cognitive Function and Health in Elderly Adults (노년기 인지기능 및 건강상태를 반영하는 지표로써 Alpha 고유리듬과 뇌파 및 HRV 지표와의 관계 연구)

  • Shim, Jun-Young
    • Science of Emotion and Sensibility
    • /
    • v.22 no.3
    • /
    • pp.21-34
    • /
    • 2019
  • This study was an examination of the relevance and clinical significance of electroencephalographic (EEG) indexes (e.g., mental/physical stress and attention) and indexes of heart rate variability (HRV) with regard to cognitive function and physiological health conditions in elderly people. A device was used to record two-channel EEGs of the frontal lobe and a one-channel ECG simultaneously. Subjects were 76 people average aged 73. The significant findings are as follows: First, subjects whose intrinsic alpha rhythm had high amplitude, regardless of peak, showed higher resistance to mental stress and lower physical stress than did subjects with low-amplitutde intrinsic alpha rhythm. Second, HRV, SDNN, and RMSSD indexes showed strong positive correlations between the two groups of subjects regardless of the division of groups. Third, the alpha asymmetry of the left and right sides of the brain in subjects with low-amplitude intrinsic alpha rhythm was larger, and the delta/alpha ratio (reflecting physical stress) and theta/sensorimotor rhythm (SMR) ratio (showing the decline in attention) were bigger. Fourth, the subjects in whom intrinsic alpha rhythm peak occurred during slow rhythm had a higher theta/SMR ratio than did subjects whose peak occurred during fast rhythm, which was related to a steeper decline in attention. Therefore, the presence or absence of intrinsic alpha rhythm peak and amplitude on quantitative EEG may be an index reflecting the cognitive function and physiological health of elderly people.

A Study on the Analysis of Damage Cause for MOF Installed in 22.9 kV Power Receiving System (22.9 kV 수전설비 시스템에 설치된 계기용변성기의 소손원인 판정에 관한 연구)

  • Kim Hyang-Kon;Shong Kil-Mok;Kim Dong-Ook;Choi Chung-Seog
    • Fire Science and Engineering
    • /
    • v.19 no.1 s.57
    • /
    • pp.93-98
    • /
    • 2005
  • The purpose of this paper is to judge the damage cause of instrument transformer(MOF; Metering Out Fit) installed in 22.9kV power receiving system. In the three-dimensional analysis of the restored MOF, the damage pattern progressed from inside to outside, there was no damaged part in the upside. The resistance of the carbonized middle part is roughly $100\kappa\Omega$ and the exothermic temperature at inside is presumed as about $300\~800^{\circ}C$ in the result of metallurgical structure analysis. The structure and the composition rate on metal surface by SEM is similar. In the result of FT-IR analysis, we can observe the absorbtion peak at $1500cm^{-1}\;and\;1730 cm^{-1}$ is small. The high exothermic peak showed at the center part of the coil in the result of DTA.

Effect of Fiber Addition for Improving the Properties of Lightweight Foamed Concrete (경량 기포콘크리트의 성능향상에 대한 섬유혼입의 영향)

  • Lee, Kyung-Ho;Yang, Keun-Hyeok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.4
    • /
    • pp.383-389
    • /
    • 2015
  • The objective of this study is to develop mixture proportioning approach of crack controlled lightweight foamed concrete without using high-pressure steam curing processes, as an alternative to autoclaved lightweight concrete blocks (class 0.6 specified in KS). To control thermal cracks owing to hydration heat of cementitious materials, 30% ground granulated blast-furnace slag (GGBS) was used as a partial replacement of ordinary portland cement (OPC). Furthermore, polyvinyl alcohol (PVA) and polyamid (PA) fibers were added to improve the crack resistance of foamed concrete. The use of 30% GGBS reduced the peak value of hydration production rate measured from isothermal tests by 28% and the peak temperature of foamed concrete measured from semi-adiabatic hydration tests by 9%. Considering the compressive strength development, internal void structure, and flexural strength of the lightweight foamed concrete, the optimum addition amount of PVA or PA fibers could be recommended to be $0.6kg/m^3$, although PA fiber slightly preferred to PVA fiber in enhancing the flexural strength of foamed concrete.

Effect of Static Stretching and Myofascial Release Techniques on Kinematic Factors of Lower Extremity Joints during Squat (스쿼트 동작 시 정적 스트레칭과 근막이완기법이 하지 관절의 운동학적 요인에 미치는 영향 )

  • Seung-Ki An;Moon-Seok Kwon;Jae-Woo Lee;Young-Tae Lim
    • Korean Journal of Applied Biomechanics
    • /
    • v.34 no.2
    • /
    • pp.53-62
    • /
    • 2024
  • Objective: The purpose of this study was to analyze the differences in kinematic factors according to stretching treatment, myofascial release treatment, and static stretching treatment conditions during squat. Method: Twelve males with resistance training experience participated in this study. Participants performed squats without treatment (Pre-Test), and performed squats after treatment with the myofascial release technique (MRT) and static stretching (SS) on different days (post-test). Squat movements were captured using eight motion capture cameras (sampling rate: 250 Hz), and the peak joint angles of the ankle, knee, hip, and pelvis were calculated for each direction. One-way repeated ANOVA and Bonferroni post hoc analyses using SPSS 27 (IBM Corp. Armonk NY, USA) were used to compare the peak joint angle of the lower extremity joints and pelvis among the normal condition (squat without treatment), MRT condition (squat after MRT treatment) and SS condition (squat after static stretching). The statistical significance level was set at .05. Results: It was observed that the maximum ankle joint flexion angle during squats was statistically reduced under conditions of myofascial release and static stretching (p<.05), in comparison to the scenario where no stretching was performed. Furthermore, static stretching was found to enhance the maximum hip flexion angle during squat (p<.05), whereas the myofascial release stretching technique resulted in the minimal posterior pelvic tilt angle (p<.05). Conclusion: Employing myofascial release stretching as a preparatory exercise proved to be more efficacious in maintaining body stability throughout the execution of high-intensity squat movements by effectively managing the posterior tilt of the pelvis, as opposed to foregoing stretching or engaging in static stretching.

Swelling at high radiation damage levels of 120 and 240 dpa in 3.5 MeV self-ion irradiated ferritic/martensitic steels

  • Myeongkyu Lee;Geon Kim;Sangjoon Ahn
    • Nuclear Engineering and Technology
    • /
    • v.56 no.10
    • /
    • pp.4115-4126
    • /
    • 2024
  • The swelling behavior of ferritic/martensitic steels (FC92-B/-N, HT9, and Gr.92) was investigated following 3.5 MeV Fe++ ion irradiation. Tested alloys were helium-pre-implanted up to the peak contents of 120 and 240 appm with He/dpa ratio of 1 appm/dpa at room temperature and then exposed to self-ion beam to the peak damage conditions of 120 and 240 dpa at 475 ℃. Field-emission transmission electron microscopy was used to characterize the cavity evolution. FC92-B exhibited the highest resistance to swelling among the irradiated alloys. The final volumetric swelling of FC92-B reached 1.3 % at 70 dpa and 2.9 % at 140 dpa. On the other hand, HT9 exhibited the highest swelling, reaching 7.4 % at 140 dpa. Comparing the present swelling results at 140 dpa/140 appm He with swelling data at 280 dpa/280 appm He from our previous study, it was observed that Gr.92 and FC92-N swelled more at 140 dpa/140 appm He than at 280 dpa/280 appm He. This negative correlation between swelling and dose in Gr.92 and FC92-N is primarily attributed to the helium-associated swelling suppression at higher helium concentration of 280 appm. A bimodal cavity size distribution appeared only in Gr.92 and FC92-N at 280 dpa/280 appm. This result demonstrates that the excess amount of helium over 200 appm promoted early-stabilization of new-born cavities, resulting in preferentially enhanced cavity nucleation, while impeding the growth of nucleated cavities. An inhibition in cavity growth possibly led to an extended duration of nucleation-dominant stages, finally suppressing swelling in ion-irradiated Gr.92 and FC92-N alloys.

Creep Damage Evaluation of High-Temperature Pipeline Material for Fossil Power Plant by Frequency Spectrum Analysis Method (주파수분석법에 의한 발전소 고온배관재료의 크리프손상 평가)

  • Lee, Sang-Guk;Lee, In-Cheol;Chang, Hong-Keun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.1
    • /
    • pp.10-17
    • /
    • 2000
  • In boiler high-temperature pipelines such as main steam pipe, header and steam drum in fossil power plants, conventional measurement techniques(replica method, electric resistance method, and hardness test method) for measuring creep damage have such disadvantages as complex preparation and measurement procedures, too many control parameters. And also, these techniques have low practicality and applied only to component surfaces with good accessibility. It needs to apply a reliable and quantitative ultrasonic nondestructive evaluation method that can be replaced for these equipment. In this study, both artificial creep degradation test using life prediction formula and frequency analysis by ultrasonic tests for crept specimens were carried out for the purpose of nondestructive evaluation for creep damage. As a result of ultrasonic tests for crept specimens, we conformed that the high frequency side spectra decrease and central frequency components shift to low frequency band, and also their bandwidth decreases as increasing creep damage in backwall echos.

  • PDF

Identification of an ISR-Related Metabolite Produced by Pseudomonas chlororaphis O6 against the Wildfire Pathogen Pseudomonas syringae pv. tabaci in Tobacco

  • Park, Myung-Ryeol;Kim, Young-Cheol;Park, Ju-Yeon;Han, Song-Hee;Kim, Kil-Yong;Lee, Sun-Woo;Kim, In-Seon
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.10
    • /
    • pp.1659-1662
    • /
    • 2008
  • Pseudomonas chlororaphis O6 exhibits induced systemic resistance (ISR) against P. syringae pv. tabaci in tobacco. To identify one of the ISR metabolites, O6 cultures were extracted with organic solvents, and the organic extracts were subjected to column chromatography followed by spectroscopy analyses. The ISR bioassay-guided fractionation was carried out for isolation of the metabolite. High-resolution mass spectrometric analysis of the metabolite found $C_{9}H_{9}O_{3}N$ with an exact mass of 179.0582. LC/MS analysis in positive mode showed an $(M+H)^{+}$ peak at m/z 180. Nuclear magnetic resonance ($^{1}H,\;^{13}C$) analyses identified all protons and carbons of the metabolite. Based on the spectroscopy data, the metabolite was identified as 4-(aminocarbonyl) phenylacetate (4-ACPA). 4-ACPA applied at 68.0 mM exhibited ISR activity at a level similar to 1.0 mM salicylic acid. This is the first report to identify an ISR metabolite produced by P. chlororaphis O6 against the wildfire pathogen P. syringae pv. tabaci in tobacco.