• Title/Summary/Keyword: high modulus mixtures

Search Result 41, Processing Time 0.027 seconds

Laboratory Performance Evaluation of High Modulus Asphalt Mixes for Long-Life Asphalt Pavements (장수명 아스팔트 포장용 고강성 혼합물의 실내 공용성 평가)

  • Kang, Min Gyun;Lee, Jung Hun;Lee, Hyun Jong;Choi, Ji Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1D
    • /
    • pp.73-79
    • /
    • 2006
  • A major purpose of this study is to develop high modulus asphalt mixtures for perpetual asphalt pavements which can save maintenance cost by increasing the design and performance periods of the pavements. Various physical and mechanical laboratory tests are performed for the high modulus asphalt binder developed in this study. The test results show that the properties of the high modulus binder are similar to those of the French high modulus binders. In addition to the binder tests, various performance tests are conducted for the high modulus and conventional mixtures. The dynamic modulus test results indicate that the dynamic modulus values of the high modulus mixtures are higher than those of the conventional mixtures by 10~15% at $5^{\circ}C$, 20~25% at $15^{\circ}C$ and 100% at $30^{\circ}C$. It is observed from the performance tests that the high modulus mixtures yield better fatigue, rutting and moisture damage performance than the conventional mixtures.

A Study on the Physical Properties of Recycled Asphalt Mixtures Using Glass Fiber Reinforcement (유리섬유 보강재를 이용한 재활용 아스팔트 혼합물의 물리적 특성에 관한 연구)

  • Park, Ki Soo;Yoo, Pyeong Jun
    • International Journal of Highway Engineering
    • /
    • v.20 no.4
    • /
    • pp.27-34
    • /
    • 2018
  • PURPOSES : The objective of this study is to evaluate the physical properties of recycled asphalt mixtures reinforced with glass fiber. METHODS : Firstly, mixing design was conducted on recycled asphalt mixture for use of 50% recycled aggregate. Various laboratory tests were performed on four types of recycled asphalt mixtures with different glass fiber content to evaluate the physical properties. The laboratory tests include indirect tensile strength test, dynamic modulus test, Hamburg wheel tracking test and tensile-strength ratio to evaluate cracks, rutting and moisture resistance of mixtures. RESULTS : The indirect tensile strength of fiber reinforced glass increased about 139.4%. As a result of comparing the master curves obtained by the dynamic modulus test, the elasticity was low in the low temperature region and high in the high temperature region when the glass fiber was reinforced. The glass fiber contents of PEGS 0.3%, Micro PPGF 0.1% and Macro PPGF 0.3% showed the highest moisture resistance and rutting resistance. CONCLUSIONS : The test results show that use of glass fiber reinforcement can increase the resistance to cracking, rutting, and moisture damage of asphalt mixtures. It is also necessary to validate the long-term performance of recycled asphalt mixtures with glass fiber using full scale pavement testing and field trial construction.

Study for Dynamic Modulus Change Measurement of Permeable Asphalt Mixtures with Various Porosity using Non-Destructive Impact Wave (충격공진시험을 이용한 다양한 공극률을 가진 투수성 아스팔트 혼합물의 동탄성계수 변화 측정에 관한 연구)

  • Jang, Byung Kwan;Yang, Sung Lin;Mun, Sung Ho
    • International Journal of Highway Engineering
    • /
    • v.15 no.3
    • /
    • pp.65-74
    • /
    • 2013
  • PURPOSES: This study is to evaluate the dynamic modulus changes of permeable asphalt mixtures by using non-destructive impact testing method and to compare the dynamic moduli of permeable asphalt mixtures through repeated freezing and thawing conditions. METHODS: For the study, non-destructive impact testing method is used in order to obtain dynamic modulus of asphalt specimen and to confirm the change of dynamic modulus before and after freezing and thawing conditions. RESULTS : This study has shown that the dynamic moduli of asphalt concrete specimens consisting of 10%, 15% and 20% porosity are reduced by 11.851%, 1.9564%, 24.593% after freezing and thawing cycles. CONCLUSIONS : Non-destructive impact testing method is very useful and has repeatability. Specimen with 15% porosity has high durability than others.

Effect of Guar Gum on Rheological Properties of Acorn Flour Dispersions

  • Yoo, Byoung-Seung;Shon, Kwang-Joon;Chang, Young-Sang
    • Food Science and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.233-237
    • /
    • 2005
  • Rheological properties of acorn flour-guar gum mixtures (4% w/w) at different guar gum concentrations (0, 0.2, 0.4, 0.6, and 0.8% w/w) were evaluated in steady and dynamic shear. The acorn flour-guar gum mixtures at $25^{\circ}C$ showed high shear-thinning flow behavior (n= 0.20-0.27). Consistency index (K), apparent viscosity (${\eta}_{a,100}$), and Casson yield stress (${\sigma}_{oc}$) increased with the increase in guar gum concentration. Within the temperature range of $25-70^{\circ}C$, the {\eta}_{a,100}$ of mixtures obeyed the Arrhenius relationship with high determination coefficient ($R^2=\;0.974-0.994$). Activation energy values (5.37-6.77 kJ/mole) of acorn flour dispersions in the mixtures with guar gum (0.2-0.8%) were much lower than that (12.5 kJ/mole) of acorn flour dispersion (0% guar gum). Storage modulus (G'), loss modulus (G"), and complex viscosity (${\eta}^*$) increased with the increase in guar gum concentration. Dynamic rheological data of 1n (G', G") versus ln frequency (w) of guar gum-acorn flour mixtures had positive slopes with G' greater than G" over most of the frequency range, indicating that they exhibited weak gel-like behavior.

Development of Long-Life Asphalt Pavements Method Using High Modulus Asphalt Mixes (고강성 기층재를 적용한 장수명 아스팔트포장 공법 개발)

  • Lee Jung-Hun;Lee Hyun-Jong
    • International Journal of Highway Engineering
    • /
    • v.8 no.3 s.29
    • /
    • pp.49-61
    • /
    • 2006
  • This study suggests long-life asphalt pavement method which can save maintenance cost by increasing the design and performance period of pavements. The high modulus asphalt binder developed and then various physical tests are performed. Laboratory performance tests and accelerated pavement test are conducted for the high modulus and conventional mixtures. The test results show that dynamic modulus values of high modulus mixtures are higher than those of the conventional mixtures, The high modulus mixtures yield better fatigue, rutting and moisture damage performance than conventional mixtures. Structural analysis is performed and a database is built up for long life asphalt pavement design. Pavement response model is developed through a multiple regression analysis program, SPSS using the database. A design software for the long life pavements is developed based on the pavement response model and laboratory and field performance tests results. In addition, optimum pavement sections and materials are suggested. The suggested AC thickness of long life asphalt pavement is 29cm. A Life cycle cost analysis(LCCA) is conducted to check the economical efficiency of the long life pavement section. The LCCA result shows that initial construction costs of long life and conventional pavements are almost equal, but long life pavement is more profitable in terms of the LCCA.

  • PDF

Performance Evaluation of Cold Recycled Asphalt Mixtures with Asphalt Emulsion and Inorganic Additives (무시멘트 첨가제를 활용한 상온 재활용 아스팔트 혼합물의 성능 분석)

  • Park, Chang Kyu;Kim, kyungsu;Kim, Won Jae;Lee, Hyun Jong
    • International Journal of Highway Engineering
    • /
    • v.19 no.2
    • /
    • pp.137-142
    • /
    • 2017
  • PURPOSES :The objective of this study is to evaluate the performance of asphalt mixtures containing inorganic additive and a high content of reclaimed asphalt pavement (RAP). METHODS : The laboratory tests verified the superior laboratory performance of inorganic additive compared to cement, in cold recycled asphalt mixtures. To investigate the moisture susceptibility of the specimens, tensile strength ratio (TSR) tests were performed. In addition, dynamic modulus test was conducted to evaluate the performance of cold recycled asphalt mixture. RESULTS :It was determined that NaOH solution mixed with $Na_2SiO_3$ in the ratio 75:10 provides optimum performance. Compared to Type B and C counterparts, Type A mixtures consisting of an inorganic additive performed better in the Indirect tensile strength test, tensile strength ratio test, and dynamic modulus test. CONCLUSIONS : The use of inorganic additive enhances the indirect strength and dynamic modulus performance of the asphalt mixture. However, additional experiments are to be conducted to improve the reliability of the result with respect to the effect of inorganic additive.

Steady and Dynamic Shear Rheological Properties of Buckwheat Starch-galactomannan Mixtures

  • Choi, Dong-Won;Chang, Yoon-Hyuk
    • Preventive Nutrition and Food Science
    • /
    • v.17 no.3
    • /
    • pp.192-196
    • /
    • 2012
  • This study investigated the effects of galacomannans (guar gum, tara gum, and locust bean gum) on the rheological properties of buckwheat starch pastes under steady and dynamic shear conditions. The power law and Casson models were applied to describe the flow behavior of the buckwheat starch and galactomannan mixtures. The values of the apparent viscosity (${\eta}_{a,100}$), consistency index (K), and yield stress (${\sigma}_{oc}$) for buckwheat starch-galactomannan mixtures were significantly greater than those for the control, indicating that there was a high synergism of the starch with galactomannans. The magnitudes of storage modulus (G') and loss modulus (G") for the starch-galactomannan mixtures increased with increasing frequency (${\omega}$). The dynamic moduli (G', G"), and complex viscosity (${\eta}^*$) for the buckwheat starch-galactomannan mixtures were significantly higher than those for the control.

Correlation between the Properties of Superpave Binder and Engineering Properties of Recycled Aged CRM Mixtures (재생 CRM 바인더와 혼합물의 성능 상관성 연구)

  • Kim, Hyun Hwan;Jeong, Kyu Dong;Lee, Moon Sup;Lee, Soon Jae
    • International Journal of Highway Engineering
    • /
    • v.18 no.2
    • /
    • pp.1-9
    • /
    • 2016
  • PURPOSES : The performance properties (indirect tensile strength, rutting resistance, and resilient modulus) of recycled aged CRM mixtures and their correlation with Superpave binder properties (viscosity, high failure temperature, $G^*sin{\delta}$, and stiffness) were investigated. METHODS: A series of Superpave binder tests was performed by using a rotational viscometer, DSR, and BBR to evaluate the performance properties. In addition, the CRM mixes were artificially aged through accelerated aging processes, and their properties were evaluated. The correlation between the properties of recycled aged CRM binders and the engineering properties of recycled aged CRM mixtures was experimentally determined. RESULTS : The rut depth values decreased and the ITS values increased with increasing high failure temperature. In general, the resilient modulus properties seemed to be poorly correlated with the high-temperature values, regardless of the aggregate source. CONCLUSIONS: The recycled aged CRM binders and mixtures can lead to satisfactory performance, and the properties of these binders are strongly correlated with the engineering properties of the mixtures.

Determination of Dynamic Modulus of cold In-place Recycling Mixtures with Foamed Asphalt (폼드아스팔트를 이용한 현장 상온 재생 아스팔트 혼합물의 동탄성계수 결정)

  • Kim, Yong-Joo Thomas;Lee, Ho-Sin David
    • International Journal of Highway Engineering
    • /
    • v.11 no.1
    • /
    • pp.1-12
    • /
    • 2009
  • A new mix design procedure for cold in-place recycling using foamed asphalt (CIR-foam) has been developed for Iowa Department of Transportation. Some strengths and weaknesses of the new mix design parameters were considered and modified to improve the laboratory test procedure. Based on the critical mixture parameters identified, a new mix design procedure was developed and validated to establish the properties of the CIR-foam mixtures. As part of the validation effort to evaluate a new CIR-foam mix design procedure, dynamic moduli of CIR-foam mixtures made of seven different reclaimed asphalt pavement (RAP) materials collected throughout the state of Iowa were measured and their master curves were constructed. The main objectives of this study are to provide: 1) standardized testing procedure for measuring the dynamic modulus of CIR-foam mixtures using new simple performance testing (SPT) equipment; 2) analysis procedure for constructing the master curves for a wide range of RAP materials; and 3) impacts of RAP material characteristics on the dynamic modulus. Dynamic moduli were measured at three different temperatures and six different loading frequencies and they were consistent among different RAP sources. Master curves were then constructed for the CIR-foam mixtures using seven different RAP materials. Based upon the observation of the constructed master curves, dynamic moduli of CIR-foam mixtures were less sensitive to the loading frequencies than HMA mixtures. It can be concluded that at the low temperature, the dynamic modulus is affected by the amount of fines in the RAP materials whereas, at the high temperature, the dynamic modulus is influenced by the residual binder characteristics.

  • PDF

Effect of Gum Addition on the Rheological Properties of Rice Flour Dispersions

  • Chun, So-Young;Kim, Hyung-Il;Yoo, Byoung-Seung
    • Food Science and Biotechnology
    • /
    • v.15 no.4
    • /
    • pp.589-594
    • /
    • 2006
  • The effect of five commercial gums (carboxylmethylcellulose, CMC; guar gum, GG; hydroxypropylmethyl-cellulose, HPMC; locust bean gum, LBG; and xanthan gum) at a concentration of 0.25% on the rheological properties of rice flour (RF) dispersions was investigated in steady and dynamic shear. The steady shear rheological properties showed that RF gum mixture dispersions (5%, w/w) at $25^{\circ}C$ had high shear-thinning flow behavior (n=0.20-0.31) exhibiting a yield stress. Magnitudes of consistency index (K), apparent viscosity (${\eta}_{a,100}$), and Casson yield stress (${\sigma}_{oc}$) of RF-gum mixtures were much higher than those of RF dispersion with no added gum (control). Activation energy values (6.67-10.8 kJ/mole) of RF-gum mixtures within the temperature range of $25-70^{\circ}C$ were lower than that (11.9 kJ/mole) of the control. Dynamic rheological data of log (G', G") versus log frequency (${\omega}$) of RF-gum mixtures had positive slopes (0.15-0.37) with G' greater than G" over most of the frequency range (0.63-63 rad/sec), demonstrating a frequency dependency. Tan ${\delta}$ (G"/G') values of RF-gum mixtures, except for xanthan gum, were much higher than that of the control.