• Title/Summary/Keyword: high manganese alloy

Search Result 33, Processing Time 0.022 seconds

A Study on the Surface Properties and Corrosion Behavior of Functional Aluminum 3003 Alloy using Anodization Method (양극산화 방법을 이용한 기능성 알루미늄 3003 합금의 표면 특성 및 부식 거동 연구)

  • Kim, Jisoo;Jeong, Chanyoung
    • Corrosion Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.290-299
    • /
    • 2022
  • Anodizing is an electrochemical surface treatment method conferring corrosion resistance and durability by forming a thick anodization film on the metal surface. Aluminum has a long service life and high thermal conductivity and formability, as well as excellent corrosion resistance. Aluminum 3003 alloy has improved formability, strength, and corrosion resistance due to the addition of a small amount of manganese. However, corrosion occurs in seawater and environments polluted with corrosion-inducing substances, which reduce corrosion resistance. Therefore, it is necessary to artificially form a thick anodized film to improve corrosion resistance. In this study, the anodization treatment time was 4 minutes, and voltages of 10 V, 20 V, 30 V, 40 V, 50 V, 60 V, 70 V, 80 V, 90 V, and 100 V were applied. The thickness and pore size of the oxide film increased according to the applied voltage. A barrier film was formed under voltage conditions from 10 V to 50 V, and a porous film was formed under voltage conditions from 60 V to 100 V. After anodizing, coating was applied. Wettability and corrosion resistance were observed before and after coating according to the surface shape and thickness of the oxide film.

A Study on Exposure to Hazard Factors in Furnace Worker in Ferro-Alloy Manufacturer Factory (합금철 제조공장 출탕 노동자의 유해인자 노출)

  • Cha, Wonseok;Kim, Boowook;Choi, Byungsoon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.27 no.4
    • /
    • pp.302-312
    • /
    • 2017
  • Objectives: In this study, an evaluation of the working environment of furnace workers was performed and the work-relatedness of the occupational diseases were examined Methods: In this study, two electric furnaces at a single casting business site producing manganese-based iron alloy were selected, and occupational exposures to hazardous substances were evaluated for furnace workers and furnace worker assistants. Results: As a result, total dust concentration were $0.407{\sim}3.001mg/m^3$ and respirable dust concentration were $0.196{\sim}0.584mg/m^3$. The highest concentration of crystalline silica was $0.079mg/m^3$ In the case of Masato and Sosuckwhoi crystalline silica, they contained 90.85% and 4.17% respectively. Manganese concentration was the highest at a $0.205mg/m^3$ maximum. The average of black carbon is $11.56{\mu}g/m^3$ and the maximum concentration is $604.23{\mu}g/m^3$. PAHs concentration was the highest at a $78.301{\mu}g/m^3$ of naphthalene. The concentration of carbon monoxide was 18.82 ppm(total average 3.89 ppm) during pouring, and the maximum is 131 ppm. The formaldehyde concentration was 0.003 to 0.007 ppm. Conclusions: It seems that conditions in the past were worse, since casting has recently been performed only twice per day for about 20 minutes, reducing the amount of pouring, and local exhaust systems have been installed one-by-one. In addition, it was judged that the past exposure levels were higher considering the points measured on the back-side due to the risk of damage to the individual samples. It was found that operators could be exposed to high concentrations of crystalline silica, and that they were also exposed to high concentrations of metal(fume) and carbon monoxide during pouring. Therefore, there is a risk that occupational diseases such as lung cancer and COPD may occur with long-term work in such a process.

A Study on The Variation of Penetration According to The Shielding Gas in A1100 Aluminum Welding (A1100 알루미늄 용접에서 실드가스의 종류에 따른 용입부의 변화 연구)

  • Kim, Jin-Su;Kim, Bub-Hun;Kim, Gue-Tae;Park, Yong-Hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.2
    • /
    • pp.49-54
    • /
    • 2013
  • Recently welding of aluminum material is actively carried out to make lightweight in the fields of LNG vessels, aircraft, chemical plants, etc. To obtain high strength, hardness and elongation, elements such as manganese, zinc, silicon, etc should be added in aluminum alloy, which has been improved on the mechanical properties like precipitation hardening, age hardening, loosening, corrosion resistance acid resistance. Ar gas is used as a shielding gas of MIG welding for aluminum, also $N_2$, $O_2$, $CO_2$, $H_2$ etc can be added depending on the composition of the alloy. In this study, Ar + $O_2$, Ar, and He were used for welding, hardness, penetration status and changes in composition of penetrated parts were compared and analyzed. This made it possible to know the status and changes of the process in the penetrated parts depending on used gas throughout this study.

Effect of Reverse Transformation on the Microstructure and Retained Austenite Formation of 0.14C-6.SMn Alloy Steel (0.14C-6.5Mn 합금강의 미세조직과 잔류오스테나이트 형성에 미치는 역변태처리의 영향)

  • Song, K.H.;Lee, O.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.4
    • /
    • pp.253-258
    • /
    • 2000
  • The present study aimed to develop the TRIP(transformation induced plasticity) aided high strength low carbon steel sheets using reverse transformation process. The cold-rolled 0.14C-6.5Mn steel was reverse-transformed by slow heating to intercritical temperature region and air cooling to room temperature. An excellant combination of tensile strength and elongation of $98.3kgf/mm^2$ and 44.4% appears. This combination comes from TRIP phenomena of retained austenite during deformation. The stability of retained austenite Is very Important for the good ductility and it depends on diffusion of carbon and manganese during reverse transformation. The air cooling after holding at intercritical temperature retards the formation of pearlite and provides the carbon enrichment in retained austenite, resulting the increase of elongation in cold-roiled TRIP steel.

  • PDF

High alloyed new stainless steel shielding material for gamma and fast neutron radiation

  • Aygun, Bunyamin
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.647-653
    • /
    • 2020
  • Stainless steel is used commonly in nuclear applications for shielding radiation, so in this study, three different types of new stainless steel samples were designed and developed. New stainless steel compound ratios were determined by using Monte Carlo Simulation program Geant 4 code. In the sample production, iron (Fe), nickel (Ni), chromium (Cr), silicium (Si), sulphur (S), carbon (C), molybdenum (Mo), manganese (Mn), wolfram (W), rhenium (Re), titanium (Ti) and vanadium (V), powder materials were used with powder metallurgy method. Total macroscopic cross sections, mean free path and transmission number were calculated for the fast neutron radiation shielding by using (Geant 4) code. In addition to neutron shielding, the gamma absorption parameters such as mass attenuation coefficients (MACs) and half value layer (HVL) were calculated using Win-XCOM software. Sulfuric acid abrasion and compressive strength tests were carried out and all samples showed good resistance to acid wear and pressure force. The neutron equivalent dose was measured using an average 4.5 MeV energy fast neutron source. Results were compared to 316LN type stainless steel, which commonly used in shielding radiation. New stainless steel samples were found to absorb neutron better than 316LN stainless steel at both low and high temperatures.

Effect of simulated double cycle welding on HAZ microstructure for HSLA steels

  • El-Kashif, Emad F.;Morsy, Morsy A.
    • Advances in materials Research
    • /
    • v.7 no.3
    • /
    • pp.195-201
    • /
    • 2018
  • High Strength low alloy steels containing various levels of C, Nb and Mn were used and for each of which, a simulated double thermal cycle was applied with the same first peak temperature and different second peak temperatures to produce HAZ microstructure corresponding to multi-pass weld. Effect of double cycle second temperature on the microstructure was observed and compared with single cycle results obtained from previous works, it was found that the percentage of martensite austenite constituent (MA) increases by Nb addition for all steels with the same Mn content and the increase in Mn content at the same Nb content shows an increase in MA area fraction as well. MA area fraction obtained for the double cycle is larger than that obtained for the single cycle for all steels used which imply that MA will have great role in the brittle fracture initiation for double cycle and the inter-pass temperature should be controlled for medium and high-carbon Mn steel to avoid large area fraction of MA. The beneficial effects of Niobium obtained in single pass weld were not observed for the double cycle or multi pass welds.

Bone-like Apatite Formation on Ti-6Al-4V in Solution Containing Mn, Mg, and Si Ions after Plasma Electrolytic Oxidation in the SBF Solution

  • Lim, Sang-Gyu;Choe, Han Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.157-157
    • /
    • 2017
  • Titanium and its alloys that have a good biocompatibility, corrosion resistance, and mechanical properties such as hardness and wear resistance are widely used in dental and orthopedic implant applications. They can directly connect to bone. However, they do not form a chemical bond with bone tissue. Plasma electrolytic oxidation (PEO) that combines the high voltage spark and electrochemical oxidation is a novel method to form ceramic coatings on light metals such as titanium and its alloys. This is an excellent reproducibility and economical, because the size and shape control of the nano-structure is relatively easy. Silicon (Si), manganese (Mn), and magnesium (Mg) has a useful to bone. Particularly, Si has been found to be essential for normal bone, cartilage growth and development. Manganese influences regulation of bone remodeling because its low content in body is connected with the rise of the concentration of calcium, phosphates and phosphatase out of cells. Insufficience of Mn in human body is probably contributing cause of osteoporosis. Pre-studies have shown that Mg plays very important roles in essential for normal growth and metabolism of skeletal tissue in vertebrates and can be detected as minor constituents in teeth and bone. The objective of this work was to study nucleation and growth of bone-like apatite formation on Ti-6Al-4V in solution containing Mn, Mg, and Si ions after plasma electrolytic oxidation. Anodized alloys was prepared at 270V~300V voltages. And bone-like apatite formation was carried out in SBF solution for 1, 3, 5, and 7 days. The morphologies of PEO-treated Ti-6Al-4V alloy in containing Mn, Mg, and Si ions were examined by FE-SEM, EDS, and XRD.

  • PDF

The effect of zinc, iron and manganese content on gamma shielding properties of magnesium-based alloys produced using the powder metallurgy

  • Mesut Ramazan Ekici;Emre Tabar;Gamze Hosgor;Emrah Bulut ;Ahmet Atasoy
    • Nuclear Engineering and Technology
    • /
    • v.56 no.9
    • /
    • pp.3872-3883
    • /
    • 2024
  • This study investigates the effects of Zinc (Zn), Manganese (Mn), and Iron (Fe) additions on the microstructure, corrosion behaviour, biocompatibility, mechanical, and gamma-ray shielding properties of Magnesium (Mg) alloys prepared in various compositions using powder metallurgy (PM). The microstructure and mechanical properties of these alloys were analyzed using electron microscopes (SEM and FE-SEM) and X-ray diffraction (XRD) methods. The results showed positive changes in the material's structure when the percentage of zinc added to pure magnesium increased. It was observed that the material became ductile, and the ductile fracture increased when the zinc ratio increased. The gamma-ray shielding properties of newly produced Mg-based alloys have also been discussed since they have a high potential for use in space technologies. Radiation shielding measurements have been performed using a 3" × 3" NaI(Tl) scintillation detector NaI (Tl) gamma-ray spectrometer. The gamma-ray shielding parameters such as the linear attenuation coefficients (μl), mass attenuation coefficient (μm), effective atomic number (Zeff), half-value layer (HVL), and tenth-value layer (TVL) have been determined experimentally at photon energies of 0.511 MeV (emitted from a22Na radioactive point source) and 1.173 MeV and 1.332 MeV (emitting from a60Co radioactive point source). The obtained parameters have been compared to the theoretical results of the XCOM software, and a satisfactory agreement has been found. It can be said from the results that the Mg30Zn alloy has the best shielding properties among the produced materials.

Characterization and Emission/Absorption Study of a Grimm-type Glow discharge source in the application of high frequency Glow Discharge (고주파 글로우 방전을 이용한 GRIMM형 방전원의 특성 및 방출/흡광분석법 연구)

  • Suh, Jung-Gee;Woo, Jin-Chun
    • Analytical Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.155-164
    • /
    • 1994
  • A conventional Grimm-type glow discharge source was constructed and applied to radio-frequency(13.56MHz) discharge for metal and ceramic analysis. We investigated the emission spectrum for aluminium and aluminium oxide and the influence of discharge operating paramaters including argon pressure, rf-power and DC-bias voltages at the sample-side electrode. Scanning Electron Microscope(SEM) also was used to investigate the effect of rf-sputtering on the microstructure formation of the aluminium oxide. Linear analytical calibration curves were constructed for Manganese and zinc element in samples of low alloy steel(BAS 401-405) and brass(NIST 1108-1117).

  • PDF

Mechanism of intragranular ferrite formation in heat-affected zone of titanium killed steel

  • Terasaki, Hidenori;Komizo, Yu-Ichi
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.197-201
    • /
    • 2009
  • A lot of work is carried out concerning to acicular ferrite formation in the weld metal of high strength and low-alloy steel. Those results are suggesting that oxides that contain titanium elements provides nucleation site of intragranular ferrite, referred as acicular ferrite. Thus, when intragranular ferrite is expected to form in heat-affected zone, oxide containing titanium element should be formed in the steel. However, normal steel is deoxidized by using aluminum element (Al-killed steel) with little oxygen content. It means almost oxygen is deoxidized with aluminum elements. In the present work, in order to form the acicular ferrite in the heat affected zone, with the same concept in the case of weld metal, the steel deoxidized with titanium element (titanium killed-steel) is prepared and the acicular ferrite formation is observed in detail by using laser-conforcal microscopy technique. The confocal technique makes it possible that the morphological change along the phase transformation from austenite to ferrite is in-situ tracked. Thus, the inclusion that stimulated the ferrite nucleation could be directly selected from the observed images, in the HAZ of the Ti-killed steel. The chemical composition of the selected inclusion is analyzed and the nucleation potential is discussed by changing the nucleation site with boron element. The potency for the ferrite nucleation is summarized and the existence of effective and ineffective manganese sulfide for nucleation is made clear.

  • PDF