• 제목/요약/키워드: high intensity wind

검색결과 134건 처리시간 0.025초

대향류 확산화염의 소염특성에 미치는 직류전기장의 영향에 관한 실험적 연구 (Experimental Study on the Effect of DC Electric Field on Extinction Characteristics of Counterflow Diffusion Flame)

  • 박익형;김민국;원상희;차민석;정석호
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제33회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.253-259
    • /
    • 2006
  • The effect of DC electric fields on the flame extinction was investigated experimentally in counterflow configurations for the methane/oxygen/nitrogen diffusion flame. The electric fields was applied by connecting the high voltage and ground terminals to the upper and lower burners, respectively. In case of having electric fields, several modes of flame extinction was observed according to the electric field intensity and strain rate defined by the exit velocity. To visualize and characterize the flame structure and intensity, planar LIF technique was adopted for OH radicals. Consequently, several length scales, including the flame width, thickness, and height from the burner tip, were introduced to explain the various flame behaviors and to characterize the flame extinctions. It was found that the variation of flame width and the chemical reaction are strongly related to a critical electric field intensity, thus the various modes of diffusion flame extinction could be observed due to the electric fields.

  • PDF

Structural Design and Performance Evaluation of a Mid-story Seismic Isolated High-Rise Building

  • Tamari, Masatoshi;Yoshihara, Tadashi;Miyashita, Masato;Ariyama, Nobuyuki;Nonoyama, Masataka
    • 국제초고층학회논문집
    • /
    • 제6권3호
    • /
    • pp.227-235
    • /
    • 2017
  • This paper describes some of the challenges for structural design of a mid-story seismic isolated high-rise building, which is located near Tokyo station, completed in 2015. The building is a mixed-use complex and encompasses three volumes: one substructure including basement and lower floors, and a pair of seismic isolated superstructures on the substructure. One is a 136.5m high Main Tower (office use), and the other is a 98.5 m high South Tower (hotel use). The seismic isolation systems are arranged in the $3^{rd}$ floor of the Main Tower and $5^{th}$ floor of the South Tower, so that we call this isolation system as the mid-story seismic isolation. The primary goal of the structural design of this building was to secure high seismic safety against the largest earthquake expected in Tokyo. We adopted optimal seismic isolation equipment simulated by dynamic analysis to minimize building damage. On the other hand, wind-induced vibration of a seismic isolated high-rise building tends to be excited. To reduce the vibration, the following strategies were adopted respectively. In the Main Tower with a large wind receiving area, we adopted a mechanism that locks oil dampers at the isolation level during strong wind. In the South Tower, two tuned mass dampers (TMDs) are installed at the top of the building to control the vibration. In addition, our paper will also report the building performance evaluated for wind and seismic observation after completion of the building. In 2016, an earthquake of seismic intensity 3 (JMA scale) occurred twice in Tokyo. The acceleration reduction rate of the seismic isolation level due to these earthquakes was approximately 30 to 60%. These are also verified by dynamic analysis using observed acceleration data. Also, in April 2016, a strong wind exceeding the speed of 25m/s occurred in Tokyo. On the basis of the record at the strong wind, we confirmed that the locking mechanism of oil damper worked as designed.

Gust durations, gust factors and gust response factors in wind codes and standards

  • Holmes, John D.;Allsop, Andrew C.;Ginger, John D.
    • Wind and Structures
    • /
    • 제19권3호
    • /
    • pp.339-352
    • /
    • 2014
  • This paper discusses the appropriate duration for basic gust wind speeds in wind loading codes and standards, and in wind engineering generally. Although various proposed definitions are discussed, the 'moving average' gust duration has been widely accepted internationally. The commonly-specified gust duration of 3-seconds, however, is shown to have a significant effect on the high-frequency end of the spectrum of turbulence, and may not be ideally suited for wind engineering purposes. The effective gust durations measured by commonly-used anemometer types are discussed; these are typically considerably shorter than the 'standard' duration of 3 seconds. Using stationary random process theory, the paper gives expected peak factors, $g_u$, as a function of the non-dimensional parameter ($T/{\tau}$), where T is the sample, or reference, time, and ${\tau}$ is the gust duration, and a non-dimensional mean wind speed, $\bar{U}.T/L_u$, where $\bar{U}$ is a mean wind speed, and $L_u$ is the integral length scale of turbulence. The commonly-used Durst relationship, relating gusts of various durations, is shown to correspond to a particular value of turbulence intensity $I_u$, of 16.5%, and is therefore applicable to particular terrain and height situations, and hence should not be applied universally. The effective frontal areas associated with peak gusts of various durations are discussed; this indicates that a gust of 3 seconds has an equivalent frontal area equal to that of a tall building. Finally a generalized gust response factor format, accounting for fluctuating and resonant along-wind loading of structures, applicable to any code is presented.

익산지역에서 직접관능법에 의한 악취관리 사례 연구 (Application case of odor management applied direct olfactory method in Iksan)

  • 김화옥;박희근;신대윤;강공언
    • 환경위생공학
    • /
    • 제24권2호
    • /
    • pp.17-30
    • /
    • 2009
  • In Iksan city, there have been a lot of complaints caused by offensive odor from residents living near the public environmental infrastructures and the Iksan industrial complex. To solve these problems, it is important to know the present condition of odor pollution level in these areas, the emission characteristics of malodorous gases in temporal and spatial variations in addition to meteorological components, and the facilities of major sources emitting malodorous compounds. The objectives of this study is to make the odor monitoring network for 20 people who lived and worked in areas where the environmental infrastructures and the Iksan industrial complex are located and their neighboring areas for six months from June 1st to October 31st in 2008 in Iksan and to monitor the temporal and regional frequency and characteristics of odor intensity using direct olfactory methods. As a result of odor monitoring, the highest frequency of sensed odor per month and 20 people for six months was found to be 107 in July, followed by 84 in September, 80 in August, 54 in June, 38 in October, respectively. Odor intensity trend showed a regional trend in the decreasing order of Dongsan-dong, Busong-dong, and Palbong-dong. Odor was widely perceived from night through next morning and considered as the sense of excreta, chemicals, sewage, compost, waste, etc. When high odor intensity was sensed, there were constant meteorological characteristics: relative humidity was 80~90%, wind speed was less than 0.5~1 m/sec, and main wind directions were from the east, the southeast, and the south.

GMS-4 $T_{BB}$ 자료를 이용한 태풍의 중심 및 강도 분석 (Tropical Cyclone Center and Intensity Analysis from GMS-4 TBB data)

  • 김용상;서애숙;신도식;김동호
    • 대한원격탐사학회지
    • /
    • 제12권2호
    • /
    • pp.111-125
    • /
    • 1996
  • GMS 적의영상 자료와 적외 파장의 휘도온도(TBB)자료를 이용하여 태풍의 중심 위치와 강도를 예측하는 기법을 개발하 였다. 먼저 TBB의 각 온도대 별로 색을 주어 분석한 구름 패턴과 구름 밴드의 특이한 형태를 이해함으로써 태풍의 중심 위치를 결정하였다. 다음으로 태풍의 강도를 예측하기 위하여 태풍 중심 주위의 TBB값과 태풍 중심기압(혹은 최대풍속)과의 상관관계를 구하여 보았다. 그 결과 두 변 수 사이에는 일정한 시간타(24시간)를 수반하는 상관관계가 있음을 알았다. 특히 태풍 중심으로부터 300 km 이내 영역의 TBB의 평균값이 24시간 후의 태풍 중심기압(혹은 최대풍속)과 밀접한 관련이 있음이 밝혀졌다. 이러한 관계로부터 태풍 중심기압(혹은 최대풍속)을 예측할 수 있는 회귀식을 산출하였다.

광양만 권역에서의 고농도 오존 사례에 대한 기상 및 대기질 분석 (The Analysis of Atmospheric Flow Field and Air Quality According to the High Level Ozone Case on Gwangyang Bay)

  • 최현정;이화운;임헌호;송재활
    • 한국환경과학회지
    • /
    • 제17권7호
    • /
    • pp.743-753
    • /
    • 2008
  • Gwangyang Bay is often severely confronted by photochemical pollutants due to its location and dense emissions. It is located in a basin on the south coast of the Korean peninsula and is crossed by a remarkable cluster of hills and mountains of a small horizontal scale that forms a channel. Clearly, the air flow field has a great influence on the dispersion of air pollutants. The characteristics of the wind flow patterns have an important effect on the dispersion of pollutants emitted. In these situations, the distribution of the ozone concentration is extremely complicated because of the superposition of circulations of the air flow fields, especially in complex coastal region. In this study, we examined the distribution of the high level ozone on Gwangyang Bay particularly during the episode day (for 5 years). Among these days, A high level ozone was induced by the development of a sea/land breeze local circulation system, as well as by an anabatic/catabatic flow from the mountains and valley with weakening of the synoptic wind. High level ozone distribution pattern(6 types) on Gwangyang bay is analyzed and the comparison of each pattern reveals substantial localized differences in intensity and distribution of ozone concentration from the site coherence and UPA analysis of ozone concentration. The observed VOC concentration had much difference in concentrations and daily variations between Jungdong and Samil.

Comparison of semi-active and passive tuned mass damper systems for vibration control of a wind turbine

  • Lalonde, Eric R.;Dai, Kaoshan;Bitsuamlak, Girma;Lu, Wensheng;Zhao, Zhi
    • Wind and Structures
    • /
    • 제30권6호
    • /
    • pp.663-678
    • /
    • 2020
  • Robust semi-active vibration control of wind turbines using tuned mass dampers (TMDs) is a promising technique. This study investigates a 1.5 megawatt wind turbine controlled by eight different types of tuned mass damper systems of equal mass: a passive TMD, a semi-active varying-spring TMD, a semi-active varying-damper TMD, a semi-active varying-damper-and-spring TMD, as well as these four damper systems paired with an additional smaller passive TMD near the mid-point of the tower. The mechanism and controllers for each of these TMD systems are explained, such as employing magnetorheological dampers for the varying-damper TMD cases. The turbine is modelled as a lumped-mass 3D finite element model. The uncontrolled and controlled turbines are subjected to loading and operational cases including service wind loads on operational turbines, seismic loading with service wind on operational turbines, and high-intensity storm wind loads on parked turbines. The displacement and acceleration responses of the tower at the first and second mode shape maxima were used as the performance indicators. Ultimately, it was found that while all the semi-active TMD systems outperformed the passive systems, it was the semi-active varying-damper-and-spring system that was found to be the most effective overall - capable of controlling vibrations about as effectively with only half the mass as a passive TMD. It was also shown that by reducing the mass of the TMD and adding a second smaller TMD below, the vibrations near the mid-point could be greatly reduced at the cost of slightly increased vibrations at the tower top.

The cold water mass along the southeast and east coasts of Korea in 2016-2017

  • Choo, Hyo-Sang
    • Fisheries and Aquatic Sciences
    • /
    • 제24권7호
    • /
    • pp.243-259
    • /
    • 2021
  • The spatial and temporal behaviors and fluctuations of the cold water that appeared in the South East Sea and the East Sea coast from 2016 to 2017 were investigated. The water temperature drop was large in the east coast from April to June and the southeast coast from July to September, and the temperature drop period was longer in the southeast coast. The water temperature fluctuated sensitively to the wind direction, and it gradually decreased in the southwest wind but rose as if jumping in the northeast wind. Wind stress and surface water temperature had an inverse correlation, which was larger in Bukhang-Idukseo, and decreased toward the north of Guryongpo. The cold water appeared mainly in Geojedo-Pohang after 1 to 2 days when the southwest wind was strong, but when the wind became weak, it shrank to the Idukseo (Ulgi-Gampo) and extended into the open sea in a tongue shape. Cold water was distributed only in Samcheok-Toseong in mid-May, Idukseo-Guryongpo and Hupo-Jukbyeon-Samcheok from late May to mid-July, and Bukhang-Idukseo in August-September. The intensity of cold water was greatest in mid-August, and the center of cold water descended from the east coast to the southeast coast from spring to summer. The water temperature fluctuation was dominant at the periods of 1 d and 7-21 d. In wavelet spectrum analysis of water temperature and wind, wind speed increase-water temperature decrease showed phase difference of 12 h in 2 d, 18 h in 3 d, 1.5 d in 4-8 d, and 2-3 d in 8-24 d period. The correlation between the two parameters was large in Geojedo and Namhang, Bukhang-Idukseo, Guryongpo-Jukbyeon, and Samcheok-Toseong. Monitoring stations with high correlation in all periods were generally parallel to the monsoon direction.

WRF-UCM (Urban Canopy Model)을 이용한 서울 지역의 도시기상 예보 평가 (Evaluation of Urban Weather Forecast Using WRF-UCM (Urban Canopy Model) Over Seoul)

  • 변재영;최영진;서범근
    • 대기
    • /
    • 제20권1호
    • /
    • pp.13-26
    • /
    • 2010
  • The Urban Canopy Model (UCM) implemented in WRF model is applied to improve urban meteorological forecast for fine-scale (about 1-km horizontal grid spacing) simulations over the city of Seoul. The results of the surface air temperature and wind speed predicted by WRF-UCM model is compared with those of the standard WRF model. The 2-m air temperature and wind speed of the standard WRF are found to be lower than observation, while the nocturnal urban canopy temperature from the WRF-UCM is superior to the surface air temperature from the standard WRF. Although urban canopy temperature (TC) is found to be lower at industrial sites, TC in high-intensity residential areas compares better with surface observation than 2-m temperature. 10-m wind speed is overestimated in urban area, while urban canopy wind (UC) is weaker than observation by the drag effect of the building. The coupled WRF-UCM represents the increase of urban heat from urban effects such as anthropogenic heat and buildings, etc. The study indicates that the WRF-UCM contributes for the improvement of urban weather forecast such nocturnal heat island, especially when an accurate urban information dataset is provided.

Aero-elastic response of transmission line system subjected to downburst wind: Validation of numerical model using experimental data

  • Elawady, Amal;Aboshosha, Haitham;El Damatty, Ashraf
    • Wind and Structures
    • /
    • 제27권2호
    • /
    • pp.71-88
    • /
    • 2018
  • At the University of Western Ontario (UWO), numerical tools represented in semi-closed form solution for the conductors and finite element modeling of the lattice tower were developed and utilized significantly to assess the behavior of transmission lines under downburst wind fields. Although these tools were validated against other finite element analyses, it is essential to validate the findings of those tools using experimental data. This paper reports the first aeroelastic test for a multi-span transmission line under simulated downburst. The test has been conducted at the three-dimensional wind testing facility, the WindEEE dome, located at the UWO. The experiment considers various downburst locations with respect to the transmission line system. Responses obtained from the experiment are analyzed in the current study to identify the critical downburst locations causing maximum internal forces in the structure (i.e., potential failure modes), which are compared with the failure modes obtained from the numerical tools. In addition, a quantitative comparison between the measured critical responses obtained from the experiment with critical responses obtained from the numerical tools is also conducted. The study shows a very good agreement between the critical configurations of the downburst obtained from the experiment compared to those predicted previously by different numerical studies. In addition, the structural responses obtained from the experiment and those obtained from the numerical tools are in a good agreement where a maximum difference of 16% is found for the mean responses and 25% for the peak responses.