• Title/Summary/Keyword: high frequency analysis

Search Result 6,243, Processing Time 0.047 seconds

Fatigue Characteristics of High Strength Fire Resistance Steel for Frame Structure and Time-Frequency Analysis its Acoustic Emission Signal (고강도 구조용 내화강의 피로특성 및 음향방출신호의 시간-주파수 해석)

  • Kim, Hyun-Soo;Nam, Ki-Woo;Kang, Chang-Young
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.67-72
    • /
    • 2000
  • Demand for now nondestructive evaluation are growing to detect fatigue crack growth behavior to predict long term performance of materials and structure in aggressive environments especially when they are In non-visible area. Acoustic emission technique is well suited to these problems and has drawn a keen interests because of its dynamic detection ability, extreme sensitivity and location of growing defects. In this study, we analysed acoustic emission signals obtained in fatigue and tensile test of high strength fire resistance steel for frame structure with time-frequency analysis methods. The main frequency range is different in the noise and the fatigue crack propagation. It could be classified that it were also generated by composite fracture mechanics of cleavage, dimple, inclusion separation etc.

  • PDF

Experimental Study on High Frequency Vibration Transfer Characteristic of Underwater Cylindrical Shell (수중 원통형 쉘 구조물의 고주파 진동 전달특성에 대한 실험적 연구)

  • Jung, Hyung-Gi;Min, Cheon-Hong;Park, Han-Il
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.5
    • /
    • pp.58-63
    • /
    • 2011
  • Underwater vehicles such as UUVs (Unmanned Underwater Vehicles) and ROVs (Remotely Operated Vehicles) use sonar to detect their underwater environment or other underwater vehicles. The underwater vehicles designed recently have an electrical power system with high rotational speed. This system can generate high frequency vibrations above 10 kHz, and these vibrations can cause bad (negative) effects on the performance of the sonar. In many previous investigations, numerical analyses have been used for high frequency vibration problems. In this study, an experimental analysis was carried out, and a circular cylindrical shell was considered as the hull structure of an underwater vehicle. Frequency transfer functions for the circular cylindrical shell were identified using an experimental vibration analysis in the air and in a fully-submerged condition. We compare the frequency transfer functions in the air and water to obtain hydro-elastic effects. It is found that the dynamic characteristics of the circular cylindrical shell are changed by varying the response position.

Study on critical point of ZnCdSe by using Fourier analysis (Fourier 변환을 이용한 ZnCdSe 전이점 연구)

  • Yoon, J.J.;Ghong, T.H.;Kim, Y.D.
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.6
    • /
    • pp.458-462
    • /
    • 2007
  • Spectroscopic ellipsometry is an excellent technique for determining dielectric function. To obtain critical point energy, standard analytic critical point expression is used conventionally for second derivatives of dielectric function which might increase high frequency noise than signal. However, reciprocal-space analysis offers several advantages for determining critical point parameters in optical and other spectra, for example the separation of baseline, information, and high frequency noise in low-, medium-, high-index Fourier coefficient, respectively. We used reciprocal Fourier analysis for removing noise and determining critical point of ZnCdSe alloy.

A Study on the Characteristics Analysis of LLC AC to DC High Frequency Resonant Converter capable of ZVZCS (ZVZCS가 가능한 LLC AC to DC 고주파 공진 컨버터의 특성 해석에 관한 연구)

  • Kim, Jong-Hae
    • Journal of IKEEE
    • /
    • v.25 no.4
    • /
    • pp.741-749
    • /
    • 2021
  • This paper presents the current-fed type LLC AC to DC high frequency resonant converter capable of ZVZCS(Zero-Voltage and Zero-Current Switching). The current-fed type LLC AC to DC high frequency resonant converter proposed in this paper could operate not only in ZVS(Zero-Voltage Switching) operation by connecting the resonant capacitors(C1, C2) in parallel across the switching devices but also in ZCS(Zero-Current Switching) operation of the secondary diode. The ZVS and ZCS operations can reduce the turn-on loss of the switching devices and the turn-off loss of the secondary diodes, respectively. The circuit analysis of current-fed type LLC AC to DC high frequency resonant converter proposed in this paper is addressed generally by adopting the normalized parameters. The operating characteristics of proposed LLC AC to DC high frequency resonant converter were also evaluated by using the normalized control parameters such as the normalized control frequency(μ), the normalized load resistor(λ) and so on. Based on the characteristic values through the characteristics of evaluation, an example of the design method of proposed LLC AC to DC high frequency resonant converter is suggested, and the validity of the theoretical analysis is confirmed using the experimental results and PSIM simulation.

Development a High-Efficiency Induction Heating Heater using a 5[kW] Class Full-Bridge High Frequency Resonant Inverter (5[kW]급 풀-브릿지 고주파 공진형 인버터를 이용한 고효율 유도가열 히터 개발)

  • Kwon Hyuk-Min;Shin Dae-Cheul
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.5
    • /
    • pp.481-487
    • /
    • 2005
  • Proposed induction-heated system is innovative system which applied special high-frequency power circuit technique for thermal converse technique and IH(Induction-Heating) magnetic induction heating generated from induction-heated metallic package that is for distillation unit. In this occurs not burning, so that the working environment can be improved. This electromagnetic induction heating technique is used high frequency inverter, By using high frequency inverter high frequency alternative current in the range of [kHz] can be made with conventional alternative current. In this contribution IGBT module is used for high frequency inverter. This paper proposes new fluid heating method. Which is operated as follows. Working coil, which is wrapped outside of pipeline, makes the eddy current. Inside of heating vessel in isolated pipeline the specially designed stainless metallic package is inserted, which can be heated by eddy current losses. And then In this paper are discussed action analysis and characteristics analysis of 5[kW] class full-bridge resonant inverter system and resonant metallic package. In addition, by using this system, how high-efficiency heater is developed and application of system are also discussed.

Development of Noise Analysis Software-'NASPFA' in Medium-to-high Frequency Ranges using Power Flow Boundary Element Method (파워흐름경계요소법을 이용한 중고주파 소음해석 소프트웨어 'NASPFA' 개발)

  • Lee, Ho-Won;Hong, Suk-Yoon;Kwon, Hyun-Wung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.949-953
    • /
    • 2004
  • In this paper, Power Flow Boundary Element Method(PFBEM) is studied as the numerical method for the vibration and sound predictions of complex structures in medium-to-high frequency ranges. NASPFA, the sound analysis software based on PFBEM, is developed and is used for the vibro-acoustic analysis. And also the developed software is used for the prediction of interior and exterior sound fields of vibrating structures and for the analysis of the multi-domain problems. To verify the accuracy, NASPFA is applied to the prediction of the energy distribution in the simple structures, and its results are compared with exact PFA solutions. And various practical vehicle systems are modeled and the distributions of the acoustical energy density are successfully predicted.

  • PDF

Pulse Density Modulation Controlled Series Load Resonant Zero Current Soft Switching High Frequency Inverter for Induction-Heated Fixing Roller

  • Sugimura, Hisayuki;Kang, Ju-Sung;Saha, Bishwajit;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.226-228
    • /
    • 2006
  • This paper presents the two lossless auxiliary inducors-assisted voltage source type half bridge(single ended push pull:SEPP) series resonant high frequency inverter for induction heated fixing roller in copy and printing machines. The simple high-frequency inverter treated here can completely achieve stable zero current soft switching (ZCS) commutation forwide its output power regulation ranges and load variations under constant high frequency pulse density modulation (PDM) scheme. Its transient and steady state operatprinciple is originally described and discussed for a constant high-frequency PDM control strategy under a stable ZCS operation commutation, together with its output effective power regulation charactertics-based on the high frequency PDM strategy. The experimenoperating performances of this voltage source SEPP ZCS-PDM series resonant high frequency inverter using IGBTs are illustrated as compared with computer simulation results and experimenones. Its power losses analysis and actual efficiency are evaluated and discussed on the basis of simulation and experimental results. The feasible effectiveness of this high frequency inverter appliimplemented here is proved from the practical point of view.

  • PDF

Single Phase Inverter High Frequency Circuit Modeling and Verification for Differential Mode Noise Analysis (차동 노이즈 분석을 위한 단상 인버터 고주파 회로 모델링 및 검증)

  • Shin, Ju-Hyun;Seng, Chhaya;Kim, Woo-Jung;Cha, Hanju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.3
    • /
    • pp.176-182
    • /
    • 2021
  • This research proposes a high-frequency circuit that can accurately predict the differential mode noise of single-phase inverters at the circuit design stage. Proposed single-phase inverter high frequency circuit in the work is a form in which harmonic impedance components are added to the basic single-phase inverter circuit configuration. For accurate noise prediction, parasitic components present in each part of the differential noise path were extracted. Impedance was extracted using a network analyzer and Q3D in the measurement range of 150 kHz to 30 MHz. A high-frequency circuit model was completed by applying the measured values. Simulations and experiments were conducted to confirm the validity of the high-frequency circuit. As a result, we were able to predict the resonance point of the differential mode voltage extracted as an experimental value with a high-frequency circuit model within an approximately 10% error. Through this outcome, we could verify that differential mode noise can be accurately predicted using the proposed model of the high-frequency circuit without a separate test bench for noise measurement.

Experimental Study On Power Flow Analysis of Vibration of a Coupled Plate (연성 평판 진동에 대한 파워흐름해석법의 실험적 연구)

  • Lee, G.H.;Kil, H.G.;Hwang, S.G.;Hong, S.Y.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.797-800
    • /
    • 2006
  • The power flow analysis(PFA) can be effectively used to predict structural vibration in medium-to-high frequency ranges. In this paper, vibration experiment has been performed to observe the analytical characteristics of the power flow analysis of the vibration of a plate. In the experiment, the loss factor of the plate and the input mobility at a source point have been measured. The data for the loss factor has been used as the input data to predict the vibration of the plate with PFA. The frequency response functions have been measured over the surface of the plate. The comparison between the experimental results and the predicted results for the frequency responsefunctionshasbeenperformed.

  • PDF

A Study on Prediction of Conducted EMI In PWM inverter fed Induction Motor Drive System (PWM 인버터-유도전동기 구동시스템의 전도노이즈 예측에 관한 연구)

  • 이진환;안정준;원충연;김영석;최세완
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.367-372
    • /
    • 1999
  • In this paper, an inverter fed induction motor drive system is analyed in order to predict the conducted interference. High frequency model for inverter, motor and system parasitic components are proposed. High frequency component allows time and frequency domain analysis to be performed with standard PSpice tool. The overall high frequency component and model are verified by comparing simulation and experimental result.

  • PDF