• Title/Summary/Keyword: high field

Search Result 15,957, Processing Time 0.044 seconds

High field HTS insert coils : Status and key technical issue

  • Schwartz, Justin
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.22-22
    • /
    • 2000
  • The discoveries of high temperature superconductors received great attention due to their high critical temperatures. These materials also exhibit extremely high critical magnetic fields and high critical current density at low temperature, high magnetic field. Thus, they are the most promising materials for superconducting magnets above 20 T. In this talk, progress in the development of HTS materials and insert coils at the National High Magnetic Field Laboratory will be reviewed. In 1999, a Bi-2212 stack of double pancakes generated 3 T in a 19 T background field. These results will be reviewed in terms of implications for future systems. Individual double pancakes of Bi-2223 have also been tested and their performance will also be discused. The present goal of a 57 system will be presented and the key technical requirements for larger, higher field systems will be addressed. It will be shown that in addition to increased critical current density, improved mechanical performance (stain resistanced) is necessary for high field systems. Furthemore, improvements in the conductor n-value will improve prospects for operational systems.

  • PDF

Analysis of mechanical characteristics of superconducting field coil for 17 MW class high temperature superconducting synchronous motor

  • Kim, J.H.;Park, S.I.;Im, S.H.;Kim, H.M.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.3
    • /
    • pp.13-19
    • /
    • 2013
  • Superconducting field coils using a high-temperature superconducting (HTS) wires with high current density generate high magnetic field of 2 to 5 [T] and electromagnetic force (Lorentz force) acting on the superconducting field coils also become a very strong from the point of view of a mechanical characteristics. Because mechanical stress caused by these powerful electromagnetic force is one of the factors which worsens the critical current performance and structural characteristics of HTS wire, the mechanical stress analysis should be performed when designing the superconducting field coils. In this paper, as part of structural design of superconducting field coils for 17 MW class superconducting ship propulsion motor, mechanical stress acting on the superconducting field coils was analyzed and structural safety was also determined by the coupling analysis system that is consists of commercial electromagnetic field analysis program and structural analysis program.

EFFECTS OF FIELD PRODUCTIVITY, VARIETY AND NITROGEN RATE ON THE YIELD, QUALITY AND PHYSICO-CHEMICAL CHARACTERISTICS OF BURLEY TOBACCO (버어리종 잎담배의 수량, 품질 및 이화학성에 미치는 포지비옥도, 품종 및 질소시용량의 영향)

  • Kim, Sang-Beom;Kim, Yong-Kyoo;Han, Chul-Soo
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.12 no.2
    • /
    • pp.91-101
    • /
    • 1990
  • A field experiment was conducted to find out the effects of field productivity, variety and nitrogen rate on the yield, quality, chemical constituents and physical properties of burley cured leaf in three field with different productivity(Degree of field productivity: A ; high, B ; medium, C : low) during successive two years(1988~89). The yield and quality were remarkably lowered when nitrogen fertilizer being applied much in low productive field. As compared with Burley 21, KB101 showed high yield, particularly the yield of KB101 in low productive field was relatively high. The effect of nitrogen rate on the yield was somewhat different according to field productivity and production year. When the nitrogen fertilizer being applied above 22.5kg/10a, the added nitrogen had no effect on the yield. Total nitrogen content of cured leaf grown in low productive field was high while total alkaloid was low, therefore total alkaloid/total nitrogen ratio was remarkably low. The lightness, red and yellow color of cured leaf grown in low productive field was remarkably low. As compared with Burley 21, the contents of total alkaloid and total nitrogen and shatter resistance index of cured leaf was somewhat low, while the filling power, lightness, red and yellow color were slightly high. Total nitrogen content of cured leaf was increased remarkably by nitrogen addition, but total alkaloid was not increased though the nitrogen fertilizer being applied above 22.5kg/10a. The filling power and shatter resistance index of cured leaf grown in high nitrogen plot, and the lightness and yellow color were low while the red color was relatively high. It comes into question that the visual quality being increased as well as increment of yield and nitrogenous compounds by nitrogen addition in high productive field. In low productive field, it is considerable that nitrogen addition for high yield should be prohibited because it causes the decrement of yield and quality, on the contrary.

  • PDF

Development of High-Field ESR System Using SQUID Magnetometer and its Application to Measurement under High Pressure

  • Sakurai, T.;Fujimoto, K.;Okubo, S.;Ohta, H.;Uwatoko, Y.
    • Journal of Magnetics
    • /
    • v.18 no.2
    • /
    • pp.168-172
    • /
    • 2013
  • We have developed a high-field and high-frequency ESR system using a commercially available magnetometer equipped with the superconducting quantum interference device (SQUID). This is magnetization detection type ESR and ESR is observed as a change of the magnetization at the resonance condition under irradiation of the electromagnetic wave. The frequency range is from 70 to 315 GHz and the maximum magnetic field is 5 T. The sensitivity is estimated to be $10^{13}$ spins/G. The advantage of this system is that the high-field ESR measurements can be made very easily and quantitatively. Moreover, this high-field ESR can be applied to the measurements under pressure by using a widely used piston-cylinder pressure cell.

The Characteristics of Surface Flashover on the Semiconductor in High Electric-Field (고전계 하에서 반도체 연면방전 특성)

  • 이세훈;이충식
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.1
    • /
    • pp.35-43
    • /
    • 2002
  • In the last decade, considerable efforts have been made to make a new class of solid state high power, high speed electronic device, namely, the Photo-Conductive Power Switch(PCPS), and to characterize the high-field performance of PCPS under high power, high voltage conditions. But the problem of surface flashover phenomena persist, preventing the realization of reliable and efficient high-speed, high voltage switching devices. It is essential to have a clear understanding on the physical processes behind the surface flashover problem to develop new technologies and device architectures so as to fabricate PCPS that are capable of high-field high-voltage. Also, it is imperative to identify new materials that could satisfy the requirements for high-field, high-power devices. Since surface flashover, surface breakdown phenomena is observed for all the devices that foiled at the applied field much lower than semiconductor bulk breakdown field, surface passivation is considered one of the important practical methods to improve the high field performance of the devices. Therefore, this paper was studied the main properties and mechanism of the semiconductor surface flashover before and after passivation under high electric-field.

Electromagnetic design study of a 7 T 320 mm high-temperature superconducting MRI magnet with multi-width technique incorporated

  • Jang, Won Seok;Kim, Geonyoung;Choi, Kibum;Park, Jeonghwan;Bang, Jeseok;Hahn, Seungyong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.4
    • /
    • pp.30-34
    • /
    • 2021
  • Superconducting magnets have paved the way for opening new horizons in designing an electromagnet of a high field magnetic resonance imaging (MRI) device. In the first phase of the superconducting MRI magnet era, low-temperature superconductor (LTS) has played a key role in constructing the main magnet of an MRI device. The highest magnetic resonance (MR) field of 11.7 T was indeed reached using LTS, which is generated by the well-known Iseult project. However, as the limit of current carrying capacity and mechanical robustness under a high field environment is revealed, it is widely believed that commercial LTS wires would be challenging to manufacture a high field (>10 T) MRI magnet. As a result, high-temperature superconductor together with the conducting cooling approach has been spotlighted as a promising alternative to the conventional LTS. In 2020, the Korean government launched a national project to develop an HTS magnet for a high field MRI magnet as an extent of this interest. We have performed a design study of a 7 T 320 mm winding bore HTS MRI magnet, which may be the ultimate goal of this project. Thus, in this paper, design study results are provided. Electromagnetic design and analysis were performed considering the requirements of central magnetic field and spatial field uniformity.

The Optimal Design of Field Ring for Reliability and Realization of 3.3 kV Power Devices (3.3 kV 이상의 전력반도체 소자 구현 및 신뢰성 향상을 위한 필드링 최적 설계에 관한 연구)

  • Kang, Ey Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.3
    • /
    • pp.148-151
    • /
    • 2017
  • This research concerns field rings for 3.3kV planar gate power insulated-gate bipolar transistors (IGBTs). We design an optimal field ring for a 3.3kV power IGBT and analyze its electrical characteristics according to field ring parameters. Based on this background, we obtained 3.3kV high breakdown voltage and a 2.9V on state voltage drop. To obtain high breakdown voltage, we confirmed that the field ring count was 23, and we obtained optimal parameters. The gap distance between field rings $13{\mu}m$ and the field ring width was $5{\mu}m$. This design technology will be adapted to field stop IGBTs and super junction IGBTs. The thyristor device for a power conversion switch will be replaced with a super high voltage power IGBT.

Thermally Stimulated Current from High Density Polyethylene Treated by a High Field Application (고전계인가처리된 고밀도 폴리에티렌의 열자극전류)

  • 이덕출
    • 전기의세계
    • /
    • v.27 no.3
    • /
    • pp.31-35
    • /
    • 1978
  • In this paper, in order to clarify the mature of traps in polymer, the thermally stimulated current (TSC) measurements were mad on high density polyethylene by changing the condition of the high-field treatment such as the strength of the field (Fe), the treatment time (te) and the heating rate (.betha.). In addition, the TSC measured from the HDPE was compared with that from LDPE having different crystallinity. The obtained results can suggest that the trapping proceeds during the high-field treatment and the trap associated with the peak P$_{2}$ may have the closed relation to drystallinity and the release of trapped charge is enhanced by the molecular motion.

  • PDF

Microwave Electric Field and Magnetic Field Simulations of an ECR Plasma Source for Hyperthermal Neutral Beam Generation

  • Lee, Hui-Jae;Kim, Seong-Bong;Yu, Seok-Jae;Jo, Mu-Hyeon;NamGung, Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.501-501
    • /
    • 2012
  • A 2.45 GHz electron cyclotron resonance (ECR) plasma source with a belt magnet assembly configuration (BMC) was developed for hyperthermal neutral beam (HNB) generation. A plasma source for high flux HNB generation should be satisfied with the requirements: low pressure operation, high density, and thin plasma. The ECR plasma source with BMC achieved high density at low operation pressure due to electron confinement enhancement caused by high mirror ratio and drifts in toroidal direction. The 2.45 GHz microwave launcher had a circularly bended WR340 waveguide with slits. The microwave E-field profile induced by the microwave launcher was studied in this paper. The E-field profile was a cups field perpendicular to B-filed at ECR zone. The optimized E-field profile and B-field were found for effective ECR heating.

  • PDF

Construction and Characteristics Analysis on the Field System of the High Speed Motor by using Permanent Magnet Halbach Array (영구자석 Halbach 배열을 이용한 초고속 모터용 계자시스템의 구성과 특성 해석)

  • Jang, Seok-Myeong;Seo, Jin-Ho;Jeong, Sang-Seop;Choe, Sang-Gyu
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.4
    • /
    • pp.152-160
    • /
    • 1999
  • A high speed motor has been generating a lot of attention due to its performance-more light, thin, short, compact than ordinary motors. But they have low efficiency with high frequency power source because of the iron losses which may produce too much heat as well as the copper losses occurred in the rotor windings. The Halbach array can generate the strong magnetic field systems without additional magnetic materials, therefore the iron losses can be removed. In this paper, the Halbach array is applied to the field system for the high speed motor, and three dimensional FEM is used to analyze the field of the Halbach array considering with the leakage flux. The measured values of flux density are also compared with the FEM analysis. And the magnetic characteristics of the Halbach array field system are compared with those of the conventional field systems such as slot-iron type, PM-iron type. Consequently, it is confirmed that the Halbach array field system is more suitable to the high speed motor because it has high flux density, sinusoidal flux distribution than others.

  • PDF