• Title/Summary/Keyword: high explosives

Search Result 183, Processing Time 0.033 seconds

A Case Study of Blast Demolition at Chung-Ang Department Store in Daejeon City (대전 중앙데파트 발파해체 사례)

  • Min, Hyung-Dong;Park, Jong-Ho;Song, Young-Suk;Park, Hoon
    • Explosives and Blasting
    • /
    • v.27 no.1
    • /
    • pp.62-78
    • /
    • 2009
  • Recently, construction techniques have been rapidly developed with reconstruction of old buildings, urban regeneration and efforts of restoring natural ecology, so demolition of deteriorated buildings has been rapidly increasing. Demolition work of building should be executed without damaging surrounding environments according to relevant regulations. There are various demolition methods and among them, explosives demolition is the most practical way for expenses and safety of work. As a part of Daejeon stream ecological restoration project, this thesis is a case of executing demolition of Chung-Ang Department Store which was built 35 years ago as covered structure on the upper part of Daejeon stream with explosives demolition. This structure is 8 stories high, total height of 41.6 m including basement floor, $1,650m^2$ for building area and $18,351m^2$ for total floor area. It is located in the center of Daejeon city where shopping centers and buildings are crowded and main facilities are Daejeon subway (18m), backside shopping center (20m), underground shopping center(15m), Mokchuk bridge, Eunjung bridge(0.25m) and fiber-optic cable(0.25m). In this project, implosion was selected for explosives demolition methods by considering this area being a busy urban area, and this project was executed after examining collapse movement of structure in advance using simulation program not to damage main facilities. Total 80kg of explosives and 1,000 detonators were being used. This project will be a good case of executing explosives demolition successfully by applying implosion on urban area in the country.

A Case Study on Explosives Demolition of the Dongdaemoon Complex Stadium(Baseball field) in Republic of Korea (동대문 운동장(야구장) 발파해체 시험시공 사례)

  • Min, Hyung-Dong;Park, Jong-Ho;Song, Young-Suk;Seo, Young-Su;Kim, Rea-Hoe;Jung, Byeong-Ho
    • Explosives and Blasting
    • /
    • v.26 no.1
    • /
    • pp.23-37
    • /
    • 2008
  • The Dongdaemoon complex stadium is scheduled to remodelled into an international park, which will be named Design Plaza. The Dongdaemoon baseball field was constructed with Rahmen Structure which comprised beams, slabs and columns. In order to assure for viewing, the stadium was composed unusual structure that the height of the front column and the back column was designed differently. The bleachers was an upper arch form for viewing. The slab was not flat unliked the general infrastructure and tilted in stairway type for viewing. If we had applied the mechanical demolition method, we could have predicted several problems. Firstly, the stand could be unstable when the heavy equipment was to crush the reinforced concrete on the slab. Because the slab was not flat. Secondly, the construction expense and construction duration could be increase when the large equipment was to crush the reinforced concrete on the ground. Because the height of the stand was too high to crush on the ground so it needed to build a filling. Thus, we applied both the mechanical demolition method and explosives demolition method at the design stage. The result of explosives demolition was of complete success in terms of structural movement and controlled blasting noise and vibration. This case study provided a good example for a successful application of explosives demolition in urban areas.

Controlled Blasting Technique Applied to the Construction of the Canada Underground Research Laboratory (캐나다 Underground Research Laboratory 건설을 위한 조절발파기법의 적용)

  • Kwon Sang-Ki;Kuzyk Gregory W.
    • Explosives and Blasting
    • /
    • v.23 no.2
    • /
    • pp.1-14
    • /
    • 2005
  • The Korean Atomic Energy Research Institute is currently planning the construction of an Underground Research Tunnel to carry out research and development related to the disposal of high-level wastes from nuclear reactors used to generate electrical power. This paper discusses the excavation methods used to construct the Canadian Underground Research Laboratory and their application in planning for the construction of a similar underground laboratory and eventually an underground repository for high-level wastes in Korea.

Collapse Simulations of High-Rise RC Building Using ELS Software and Application of Explosive Demolition Methods to Transition Process Analysis from Local Damage to Progressive Collapse (ELS를 이용한 고층 RC 빌딩의 붕괴해석 및 발파해체해석 기법의 국부손상-연쇄붕괴 전이과정 해석에 응용)

  • Kim, Hyon-Soo;Park, Hoon;Kim, Seung-Kon;Lee, Yeon-Gyu;Cho, Sang-Ho
    • Explosives and Blasting
    • /
    • v.29 no.2
    • /
    • pp.1-12
    • /
    • 2011
  • Progressive collapse analyses of high-rise buildings subjected to abnormal loading such as fires, impacts, earthquakes, typhoon, bomb blasts etc. are intended. However it is difficult to perform collapse experiments of the real scale building to determine the capacity of the structure under an extreme loading events. In this study, collapse behavior of a 15 story RC structure building loaded by external explosion pressures were simulated using Extreme Loading Structures (ELS) software. The standoff distance between the RC building and explosives of 1500 kg was 1, 2, 5, 10, and 15 meters. The explosive demolition analysis techniques based on removal of partial support structures following blast scenario was adapted to investigate the transition process of progressive collapse-local damage.

An Evaluation of Cutting Performance for Cutting Structural Steel using Charging Container (장약용기를 이용한 강재 절단 성능 평가)

  • Park, Hoon;Noh, You-Song;Suk, Chul-Gi
    • Explosives and Blasting
    • /
    • v.38 no.2
    • /
    • pp.13-21
    • /
    • 2020
  • The shaped charge was used in explosive demolition of a steel frame structure, but it was often not used because it was limited to use and impossible to supply at domestic and overseas. Existing linear shaped charge did not have sufficient cutting performance to cut steel frame structures with a huge scale and thick steel plate. To solve these problems, we produced a device that could generate metal jets using industrial explosives of high detonation velocity and pressure. In this study, we made a charging container of three types which applicable to explosive demolition of steel frame structures. The experiment of cutting performances was carried out to evaluate the effect of cutting of charging containers on the various thicknesses of the H-beam and steel plate. As a result of the experiment, sufficient cutting performance was confirmed.

The Construction of large and Long Tunnel Using Bulk Explosives (벌크폭약을 이용한 대단면 장대터널 시공 사례)

  • 노상림;문상호;조영천;이상필;유지영
    • Explosives and Blasting
    • /
    • v.22 no.3
    • /
    • pp.65-70
    • /
    • 2004
  • Lately, the length of tunnel, the number of long-large tunnel over 3 lanes are steeply increased because of the request for high-speed and straight road. Therefore, the maximization of excavation efficiency is needed in tunnel construction. The sapaesan tunnel (4 lanes with the length of 4km) construction was delayed with environmental conflict far 2 years. For making-up delayed construction period, various new methods were adopted to improve excavation length, look-out and blasting efficiency. This study introduced bulk explosive which is new method in tunnel blasting and verified the efficiency of bulk explosive far long-large tunnel.

Study of Supersonic Flame Acceleration within AN-based High Explosive Containing Various Gap Materials (다양한 틈새 물질을 포함하는 AN계열 화약의 초음속 화염 전파 특성 연구)

  • Lee, Jinwook;Yoh, Jai-Ick
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.4
    • /
    • pp.32-42
    • /
    • 2013
  • We study the gap effect on detonating high explosives using numerical simulation. The characteristic acoustic impedance theory is applied to understand the reflection and transmission phenomena associated with gap test of high explosives and solid propellants. A block of charge with embedded multiple gaps is detonated at one end to understand the ensuing detonation propagation through pores and non uniformity of the tested material. A high-order multimaterial simulation provides a meaningful insight into how material interface dynamics affect the ignition response of energetic materials under a shock loading.

Experimental Study on the Recovery of Useful Minerals Using High Voltage Discharge Shock Pulse (고전압 방전 충격펄스를 이용한 유용광물 회수에 관한 실험적 연구)

  • Cho, Sangho;Jeong, Sangsun
    • Explosives and Blasting
    • /
    • v.40 no.1
    • /
    • pp.17-28
    • /
    • 2022
  • Electrical pulse disintegration(ED) is known as an efficient technology for recovering valuable resources by inducing dielectric breakdown in solids to separate mineral interfaces in ores among the crushing technologies by high voltage discharge. In this study, ED crushing experiment and mechanical crushing experiment of sulfide minerals were performed, and SEM analysis and Microfocus X-Ray CT of the crushed product were performed in order to analyze the disintegration characteristics of zinc minerals exist in the sulfide minerals by the shock wave generated in the solid by high voltage discharge.

A Case Study of Blasting with Electronic Detonator (전자뇌관을 활용한 발파 시공 사례)

  • Hwang, Nam-Sun;Lee, Dong-Hoon;Lee, Seung-Jae
    • Explosives and Blasting
    • /
    • v.34 no.4
    • /
    • pp.40-45
    • /
    • 2016
  • Sites, where explosives are used, are constantly under constraint of vibration and noise levels. If a sensitive area is located nearby the sites, mechanical excavation has been preferred rather than blasting. Recently, however, blasting using electronic detonators is applicable in the areas, where previously should be excavated by mechanical methods. $HiTRONIC^{TM}$ is a fourth-generation detonator that utilizes Hanwha Corporation's advanced electronic technology. The detonator contains IC-Chip, which allows delay times between 0~15,000ms with 1ms interval. Furthermore, the product can provide high accuracy(0.01%) for accurate-blasting. Electronic detonator is widely used in highway and railway construction sites, large limestone quarries, and other works. In this paper, several sites, in which HiTRONIC was used, are introduced in order to enhance understanding of electronic detonator.

A Case Study on Explosive Demolition of Gunsan Steam Power Station in Republic of Korea (군산화력발전소 발파해체 실용화 시험시공 사례)

  • Min, Hyung-Dong;Song, Young-Suk;Kim, Hyo-Jin;Seo, Young-Soo
    • Explosives and Blasting
    • /
    • v.25 no.2
    • /
    • pp.11-21
    • /
    • 2007
  • The main structure of Gunsan steam power station was demolished by the toppling method using high explosives. Height of a main building is 58m and a total floor area is $292,000m^2$. It is Rahmen(rigid-frame) structure consisted of almost columns and beams and slabs exist only in one part of the building for the electricity generators equipments. To improve the efficiency of blasting work, it is separated into 4 sectors. Blasting floors were 1, 2, 3, & 4 stories from first sector to third sector, while 1, 2, 5, & 7 of fourth sector were blasted because it had not slabs. About 102.675 kg of the MegaMITE were used with 225 electric detonator and 638 non-electric detonators to check detonator connection and confidence of detonation. The blasting noise and vibration were monitored to evaluate the environment effect and the damage of the nearby structures.