• Title/Summary/Keyword: high early strength concrete

Search Result 461, Processing Time 0.022 seconds

Setting Properties of Concrete with the Combination of Mineral and Chemical Admixture (광물질혼화재와 화학혼화제의 조합사용에 따른 콘크리트의 응결특성)

  • Kim Jong;Song Seung Heon;Jeon Chung Keun;Han Min Cheol;Oh Seon kyo;Han Cheon Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.505-508
    • /
    • 2004
  • This paper investigated the setting and compressive strength of concrete with the combination of mineral and chemical admixture. According to test results, plain concrete with high early strength development type AE water reducing agent(HEAEWRA) and $10\%$ of CKD respectively had earlier setting time than concrete with AE water reducing agent by $0.5\~1.5$ hours. Setting time of concrete with retarding type AE water reducing agent(RAEWRA) and FA $30\%$, BS $60\%$ respectively retarded by as much as $4\~7.5$ hours compared with plain concrete. Plain concrete with HEA WRA, $10\%$ of CKD and RAEWRA had higher strength than that of AE water reducing agent by as much as 5MPa at 28days. From the result of the paper, it is found that the combination of mineral admixture and setting accelerating or retarding agent can reduce the hydration heat cracks by setting time difference and hydration heat reduction effects.

  • PDF

An Experimental Study on the Freezing-Thawing and Chloride Resistance of Concrete Using High Volumes of GGBS (고로슬래그 미분말을 대량 사용한 콘크리트의 염해 및 동결융해 저항성에 관한 실험적 연구)

  • Ryu, Dong-Woo;Kim, Woo-Jae;Yang, Wan-Hee;You, Jo-Hyung;Ko, Jeong-Won
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.3
    • /
    • pp.315-322
    • /
    • 2012
  • The effect of ground granulated blast-furnace slag(GGBS) and alkali activator compressive strength, resistance of chloride attack and freezing-thawing is assessed to develop high volume slag concrete, the replacement rate of GGBS of which is more than 80 percent. result, as the replacement rate of GGBS increases, the compressive strength development properties of concrete in early and long term age decreased and resistance chloride attack and freezing-thawing is increased. The early strength development property, however, is extremely advanced by addition of the alkali activator, which is also found to improve resistance chloride attack and freezing-thawing.

The Effect of Dry Environment on Strength of Cement Mortar Immediately after Casting (성형직후 건조환경이 시멘트 모르터의 강도에 미치는 영향)

  • 오무영;김준희
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.33 no.2
    • /
    • pp.61-72
    • /
    • 1991
  • This study was carried out to research the strength drop of concrete in dry environment. The mixing ratio of cement-fine aggregate was 1: 1, 1 : 2, 1: 3 and 1 : 4. The curing was compared standard curing with dry curing immediately after casting. It is analysis of strength change by water-proof mixing. The curing age of cement mortar was 3days, 7days, l4days and 28days. The result obtained from this study are summarized as follows. 1. The compressive and bending strength change by increasing the curing age, dry curing mortar the increasing rate of strength was decreased than standard curing mortar. 2. The compressive and bending strength change in early curing, strength difference between standard curing mortar and dry curing motar was gradually closed by increasing the W/C. 3. The dry curing mortar was decreased than standard curing mortar in decreasing rate of compressive and bending strength by increasing the W/C. 4. The compressive strength of water-proof mortar in early curing, liquid water-proof mortar was shown high strength in dry curing than standard curing. The powder and liquid water-proof mortar have a small effect in dry environment. The liquid water-proof mortar was high strength without relation change of curing age in dry environment than standard curing. 5. The compressive strength of liquid water-proof mortar in poverty mix, dry curing was shown high strength than standard curing. 6. The bending strength was increased than compressive strength by decreasing the volume of cement in early curing. The increasing rate of bending strength was decreased to compressive stength by increasing the curing age.

  • PDF

Permeability Properties of High Fly Ash Concrete (높은 혼합비율의 플라이 애쉬를 갖는 콘크리트의 침투성 특징에 관한 연구)

  • 이진용
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.4
    • /
    • pp.109-118
    • /
    • 1995
  • The permeability of concrete is closely related to the durability and the latter may be expressed by measuring permeability of concrete. According to the results, the permeability of fly ash concrete was lower than that of OPC(PC1) concrete and decreased with increasing fly ash levels(l5%, 30% and 45%). The permeability values of concrete cured in water is significantly lower than those of concrete cured in air, but the differences were reduced with increasing fly ash level. In comparison with OPC(PC1) concrete and high fly ash concrete containing enhanced early strength cements, the latter also had a lower permeability than the former. The permeability of concrete cured in water was decreased with curing time(28 and 180 days) irrespectwe of cement types. However, the trend of results cured in air was opposite to that cured in water due to the rnicrocrackinp: of concrete. It was found that the properties of strength and permeability of concrete were related each other. However, the permeability of concrete was more dependant upon the type of binder used in concrete.

The Study of experiment on preventing frost damage at early age of mortar in low temperature using Reduction slag. (환원슬래그를 사용한 콘크리트의 내구성 평가에 관한 연구)

  • Min, Tae-Beom;Choi, Hyun-Kuk;Mun, Young-Bum;Kim, Hyeong-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.150-151
    • /
    • 2016
  • In previous study, researchers studied development of early anti-freezing cement at low temperature (-5℃) using hydration characteristics of reduction slag. In this study, the durability of concrete using reduction slag was conducted. The experiment result, reduction slag makes high temperature and improves compressive strength due to quick setting. And then result of durability show that it is no problem. However, it is considered that further study is needed about high shrinkages which was indicated in dry shrinkage.

  • PDF

A Study on the Development of Non-PC High-Early-Strength Concrete Without Steam Curing (증기양생이 불필요한 PC부재용 조강형 콘크리트 개발에 관한 연구)

  • Jun, Woo-Chul;Lee, Ji-Hwan;Park, Hee-Gon;Lee, Jae-Sam;Kim, Kyung-Min;Cho, In-Sung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.2
    • /
    • pp.156-162
    • /
    • 2014
  • This study aims to develop a rapidly hardening type of concrete to achieve the removal of form intensity (more than 10MPa) using the method of curing at room temperature in order to solve some economic environmental problems by omitting the steam curing process involved in producing PC (Precast Concrete). Therefore, this study evaluated a rapidly hardening cement containing a high amunt of C3S, which is very responsive in expressing early intensity, and a rapidly hardening type of concrete which uses some hardening accelerator to increase thehydration reaction of $C_3S$. The results of the experiment on concrete using some hardening accelerator are asfollows. In the slump flow experiment for identifying the liquidity and the air test, the desired values were met. The compression strength showed rapid expression response by 12 hours, and met the desired value within 6~9 hours. Its drying shrinkage value and Autogenous shrinkage value were measured as below ($-754.5{\times}10^{-6}$),and satisfied the requirements. In addition, in the Semi-Adiabatic Temperature Test, it was found that the concrete rose to its peak temperature within 24 hours and then its temperature dropped.

Properties of Compressive Strength of Mortar Based on High-activated Blast Furnace Slag using the Slag by-product as an Activator (슬래그부산물을 자극제로 활용한 고활성 고로슬래그 미분말 모르타르의 압축강도 발현 특성)

  • Lee, Bo-Kyeong;Kim, Gyu-Yong;Koo, Kyung-Mo;Shin, Kyoung-Su
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.1
    • /
    • pp.37-44
    • /
    • 2014
  • Recently, many efforts related to the utilization of industrial by-products have been made to reduce carbon dioxide emissions in the construction industry. Of these various efforts, concrete incorporating ground granulated blast furnace slag (BFS) provides many advantages compared to conventional concrete, such as high long-term compressive strength, improved durability and economic benefits because of its latent hydraulic property, and low compressive strength at early curing age. This paper investigates the compressive strength of high-activated ground granulated blast furnace slag blended mortar with slag by-product S type(SBP-S). The results of the experiment revealed that incorporating high-activated ground granulated blast furnace slag would affect the compressive strength of mortar. It was found that increasing the Blaine fineness and replacement ratio of slag by-product S type shows high compressive strength of mortar at early curing age because of its high $SiO_2$ and CaO contents in the slag. It is confirmed that an increase of curing age does not affect the compressive strength of mortar made with slag by-product S type at a high curing temperature. Moreover, it is possible to develop and design concrete manufactured with high-activated ground granulated blast furnace slag as binder considering the acceleration curing conditions and mix proportions.

Development of Concrete IoT Management System using internal of things technique (IoT 기술을 활용한 콘크리트 초기 품질관리 시스템(CIMS)의 개발)

  • Seo, Hang-Goo;Sin, Se-Jun;Lee, Young-Jun;Hyun, Seung-Yong;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.61-62
    • /
    • 2019
  • With development of IT technology, the ubiquitous has been realized in various industry. In construction industry, as well, end-edge techniques have been introduced such as managing technique the temperature and compressive strength of the concrete placed in structure in domestic and abroad project sites. However, several problems were found during application at the actual field regarding difficulties of connecting Bluetooth communication due to the short communication range, diffuse reflection caused by aluminum formwork, and high cost by using one-time sensor. Therefore to recover these shortages, and improve the performances, the wireless sensor network based concrete IoT management system for concrete early-age quality management was developed.

  • PDF

A Study on Properties of Early Strength Development of the Concrete (콘크리트의 조기강도 발현특성에 관한 연구)

  • Kang, Chang-Woon;Lee, Jae-Sam;Kim, Jung-Sik;Sung, Yong-Hwan;Ryu, Deug-Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.541-544
    • /
    • 2008
  • Recently, due to the increase of high-rise buildings construction, many researches for making harden of concrete earlier and remove of forms faster are being performed to reduce construction period. The purpose of this study is to analysis which mixing condition and curing temperature of early strength concrete. Porperties of concrete by the different factors, such as the type of active admixtures, mineral admixtures, curing temperature, the amount of binder, etc. Through the test of concrete using the different type of admixture, PC type was more excellent than PNS type admixture. The concrete Strength remarkably will be able to confirm that decreases from temperature below 12$^{\circ}C$.

  • PDF

A Study on Applicability of Embedded Smart Sensor for Concrete Curing Monitoring (콘크리트 양생 강도 모니터링을 위한 매립형 지능형 센서의 적용성 연구)

  • Park, Seung-Hee;Kim, Dong-Jin;Hong, Seok-Inn;Lee, Chang-Gil
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.2
    • /
    • pp.219-224
    • /
    • 2011
  • In this study, a piezoelectric smart sensor that can be embedded inside of concrete structures is developed to investigate the early stage of concrete curing. A waterproof coating is used to protect the piezoelectric sensor from moistures of concrete mixture. Also, a mortar case is utilized to encapsulate the sensor to protect it from impact loads. To estimate the strength of concrete, a self-sense guided-wave actuated sensing technique is applied. In the guided wave, its velocity is varied according to the mechanical properties of concrete such as modulus of elasticity. Because modulus of elasticity directly affects the strength of concrete, the guidedwave's velocity also affects the concrete strength development. To verify the feasibility of using the proposed approach, the smart sensor was embedded into a 100MPa concrete cylinder and the self-sense guided wave is continuously measured throughout the curing process. The measurements showed that the propagation time (TOF) of the measured guided waves gradually decreased as the curing age increased. Especially, at the early age of the curing process, the variation of the TOF was very significant. Furthermore, the results showed that there is a linear relationship between the TOF of the self-sense guided waves and the strength of concrete existed. It is safe to conclude that the proposed approach can be used very effectively in monitoring of the strength development of high strength concrete structures.