• Title/Summary/Keyword: high early strength concrete

Search Result 461, Processing Time 0.024 seconds

A Fundamental Test of Temperature Crack Reduction Method Application by Setting Time Control of Large-Scaled Mat Foundation Mass Concrete (초대형 매트기초 매스 콘크리트의 응결시간조정에 의한 온도균열저감 공법적용의 기초적 실험)

  • Han, Cheon-Goo;Lee, Jae-Sam;Noh, Sang-Kyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.3
    • /
    • pp.95-101
    • /
    • 2009
  • Constructing large-scale mat foundation mass concrete is increasing for the stability of building structure, because a lot of high rise building are being built in order to make full use of limited space. However, It is of increasing concerns that because limited placing equipments, available job-site and systems for mass concete placement in construction field do not allow to place great quantity of concrete at the same time in large scale mat foundation, consistency between placement lift can not be secured. And also, it is likely to crack due to stress caused by the difference of hydration heat generation time. To find out the solution against above problems, this study is to reconfirm the performance of normal concrete designed by mix proportion and super retarding concrete. The Fundamental test shows what happens if low heat proportioning and control method of setting time are applied at the job-site of newly constructed high rise building. The test result show that slump flow of concrete has been somewhat increased as the target retarding time gets longer, while the air content has been slightly decreased but this is no great difference from normal concrete. The setting time shows to be retarded as target retarding time gets longer, the range of retarding time increases. It is necessary to increase the amount of mix of super retarding agent in the proportion ration by setting curing temperature high since outdoor curing is about 6 hours faster than standard curing, which means the temperature of the concrete will be higher than the temperature of the surrounding environment, due to its high hydration heat when applying in a construction site. The compressive strength of super retarding concrete appears to be lower than normal concrete due to the retarding action in the early stage. However, as the time goes by, the compressive strength gets higher, and by the 28th day the strength becomes the same or higher than normal concrete.

An Experimental Study on the Carbonation and Drying Shrinkage of Concrete Using High Volumes of Ground Granulated Blast-furnace Slag (고로슬래그 미분말을 대량 사용한 콘크리트의 건조수축 및 중성화에 관한 실험적 연구)

  • Ryu, Dong-Woo;Kim, Woo-Jae;Yang, Wan-Hee;Park, Dong-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.4
    • /
    • pp.393-400
    • /
    • 2012
  • The effect of ground granulated blast-furnace slag (GGBS) and alkaline activator on the properties of setting, compressive strength, drying shrinkage and resistance of carbonation was assessed to develop high volume slag concrete, the GGBS replacement rate of which was more than 80 percent. The changes in the concrete as the replacement rate of GGBS increases were as follows. Initial and final setting time was delayed by two and a half hours, and the compressive strength development properties of concrete in early and long term age were decreased. Drying shrinkage was satisfactory as below $6{\times}10^{-4}$ in every mixture, and yet showed a tangible trend by replacement rate. Carbonation was materially increased. Setting time and early strength development property, however, were extremely advanced by the addition of the alkaline activator. While drying shrinkage was improved by the alkaline activator, resistance to carbonation was not.

An experimental study on the measurement of stress due to autogenous shrinkage of high strength concrete with bar restraint (철근구속을 받는 고강도 콘크리트의 자기수축응력에 관한 실험 연구)

  • 최진영;박신일;전철송;임병호;김화중
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.67-72
    • /
    • 2002
  • The purpose of this study is to investigate on the measurement of stress due to autogenous shrinkage of high strength concrete according to the W/C ratio at early age. The main parameters are as follows W/C ratio is 25, 30, 40%. The size of specimen is 10$\times$10$\times$150cm and the autogenous shrinkage strain is measured by the bonded strain gauge at the inside of the specimens. From the test, it is suggested that the autogenous shrinkage stress increased as W/C ratio decreased.

  • PDF

Monitoring of bridge overlay using shrinkage-modified high performance concrete based on strain and moisture evolution

  • Yifeng Ling;Gilson Lomboy;Zhi Ge;Kejin Wang
    • Structural Monitoring and Maintenance
    • /
    • v.10 no.2
    • /
    • pp.155-174
    • /
    • 2023
  • High performance concrete (HPC) has been extensively used in thin overlay for repair purpose due to its excellent strength and durability. This paper presents an experiment, where the sensor-instrumented HPC overlays have been followed by dynamic strain and moisture content monitoring for 1 year, under normal traffic. The vibrating wire and soil moisture sensors were embedded in overlay before construction. Four given HPC mixes (2 original mixes and their shrinkage-modified mixes) were used for overlays to contrast the strain and moisture results. A calibration method to accurately measure the moisture content for a given concrete mixture using soil moisture sensor was established. The monitoring results indicated that the modified mixes performed much better than the original mixes in shrinkage cracking control. Weather condition and concrete maturity at early age greatly affected the strain in concrete. The strain in HPC overlay was primarily in longitudinal direction, leading to transverse cracks. Additionally, the most moisture loss in concrete occurred at early age. Its rate was very dependent on weather. After one year, cracking survey was carried out by vision to verify the strain direction and no cracks observed in shrinkage modified mixes.

Improvement of the Quality on High Volume Fly-Ash Concrete Corresponding to the Addition of Various Admixtures (각종 혼합재료의 첨가에 따른 플라이애쉬 다량 사용 콘크리트의 초기품질 향상)

  • Lee, Ju-Sun;Pei, Chang-Chun;Ryu, Gum-Sung;Koh, Kyung-Taek;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.737-740
    • /
    • 2008
  • This study, with the purpose for early quality improvement of concrete which used large quantity of fly ash, changed various admixture material type and reviewed the basic characteristics. First off, the flow overall was highest when polycarb onic Acid high early strength AE water reducing agent was displaced, while air amount satisfied target level only in the case of plain, and setting time was shown best by getting 30 more minutes than plain and about 3 more hours than conventional when KOH is displaced. Compressive strength was shown best at age 1 day and 3 days when KOH was displaced, and at age 28 days when fine particle cement was displaced. By and large, this study concludes that concrete quality improvement admixture material that used large amount of fly ash showed worse effects than plain, therefore it is determined that there need be more study for development of concrete early quality improvement admixture material that used large amount of fly ash.

  • PDF

Properties of Adiabatic Temperature Rise of Concrete Using Different Types of Binder and Effects of Adiabatic Temperature on the Compressive Strength (결합재 종류에 따른 콘크리트의 단열온도상승특성 및 단열온도상승에 따른 압축강도특성에 관한 연구)

  • 하재담;김태홍;이종열;김진근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.527-532
    • /
    • 2001
  • The crack of concrete induced by a temperature rise in early age concrete due to the heat of ration of cement is a serious problem for massive or high strength concrete structures. However, re is still no reasonable equations for the prediction of the temperature rising. On this study, the prediction equations of the heat of hydration of different types of binder are pained from the adiabatic temperature rise test, and compared with the results from different nations to obtain the best approximated equation. The strengths of concrete of which specimens were placed in the same chamber for the adiabatic to were compared with those under standard curing.

  • PDF

The Characteristics of Hydration Heat Generation of Low Heat Concrete using Hydration Heat Reducing Admixtures (분말형 수화열저감재를 사용한 저발열 콘크리트의 수화발열 특성)

  • Kim, Yong-Ro;Jung, Yang-Hee;Lee, Sang-Ho;Kim, Do-Su;Khil, Bae-Su;Kim, Won-Ki
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.709-712
    • /
    • 2006
  • It is necessary to develop a new technology for controling thermal cracking by hydration heat according to the increase construction of massive concrete structures, high strength concrete and early strength concrete. Therefore, it was investigated the characteristics of hydration heat generation of low heat concrete using hydration heat reducing admixtures in this study. To investigate the performance of hydration heat reducing admixtures, it was evaluated hydration heat according to the kind and replacement ratio of phase change material series I, II and the way of using hydration heat reducing admixtures in series III.

  • PDF

The Effects of Fine Particle Cement on the Quality of Fly Ash Concrete (플라이애시 사용 콘크리트의 품질에 미치는 미분시멘트의 영향)

  • Lee, Joung-Ah;Joeon, Kyu-Nam;Baek, Dae-Hyun;Park, Jong-Ho;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.05b
    • /
    • pp.113-117
    • /
    • 2009
  • Fly ash (called FA hereafter) that results from thermal power plants is a long-term strength improving substance with reactivity to pozzolan and has been used for long. However, large amount of FA shows many advantages such as reduction of hydratio energy, long-term improvement in strength and economic feasibility and also has difficulties from reduction in initial strength and durability. In a preceding study, fine particle cement was applied to test the effects on initial strength. Therefore in this study, the effects of fine particle cement on the quality of FA concrete were reviewed. The results can be summarized as follows. Liquidity was increased by the most at FC substitution ratio of 15%. Air capacity was reduced according to increasing substitution ratio of FA and FC. Compressive strength showed high strength expression at all ages when FC was substituted at 45%. Synthesizing the above results, appropriate mixing of FC in FA concrete can improve liquidity, reduce unit quantity and show improvement in strength. In particular, mixed use of FC seems effective in improving early quality of concrete.

  • PDF

Properties of Compressive Strength of Mortar Based on High-activated Blast Furnace Slag and Possibility of Concrete Secondary Products (고활성 고로슬래그 미분말 모르타르의 압축강도 발현 특성 및 콘크리트 2차 제품용 결합재 활용 가능성 검토)

  • Lim, Jae-Hyun;Kim, Gyu-Yong;Koo, Kyung-Mo;Kim, Hong-Seop;Yoon, Min-Ho;Lee, Bo-Kyeong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.66-67
    • /
    • 2013
  • Replacing a large amount of ground granulated blast furnace slag is limited because early age strength is low due to latent hydraulic property despite excellence of long-term strength. This study aimed to examine produceableness of high-activated ground granulated blast furnace slag using slag by-product from steel process. As experimental variable, the properties of strength development were analyzed by setting fineness and replacement ratio of slag by-product, curing conditions, and W/B. The results of study showed that high-activated ground granulated blast furnace slag using slag by-product as an activator improve the compressive strength of mortar. It is expected to be used as binder for secondary product of concrete considering curing and mixing conditions because high-activated ground granulated blast furnace slag can be hydrated by itself.

  • PDF

An Experiment on the Structure Application of Cold Weather Concreting Using Anti-freeze Agent and Insulating Form (내한제 및 단열거푸집을 이용한 한중콘크리트의 구조체 적용 실험)

  • 김경민;손성운;김기철;오선교;한천구
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2002.05a
    • /
    • pp.21-26
    • /
    • 2002
  • This paper is intended to verify the efficiency of anti-freeze agent and insulating form by analyzing the temperature history and the property of strength-increase about the concrete that is placed in the insulating form and normal form, using new type anti-freeze agent in batcher plant According to the results about the temperature history, while the lowest temperature shows 3$^{\circ}C$ in case of normal concrete + euroform, 4$^{\circ}C$ in case of normal concrete + insulating form, it shows 6$^{\circ}C$ in anti-freeze agent + the insulating form, so the effect is most favorable. The compressive strength with mixing anti-freeze agent or not, shows high in order of standard curing, structure-managing and open air-placed specimen and the concrete mixing anti-freeze agent shows the highest compressive strength-increase.

  • PDF