• 제목/요약/키워드: high deposition rate

검색결과 629건 처리시간 0.029초

알루미나 세라믹스 표면에 무전해 환원 니켈막의 형성에 관한 연구(I) 무전해 니켈도금의 실험적 석출속도에 관한 연구 (Studies on Electroless Nickel Plating on Alumina Ceramics(I) on Empirical Deposition Rate in Electroless Nickel Plating)

  • 김용대;이준
    • 한국표면공학회지
    • /
    • 제19권3호
    • /
    • pp.109-120
    • /
    • 1986
  • The electroless nickel plating on high alumina ceramics was performed in the bath containing nickel chloride, sodium hypophosphite and mono- or bi-carboxylic acid as a complexing agent in order to examine the empirical rate law as well as the effects of the complexing agent, plating temperature and pH on the rate of deposition. Adding the carboxylic acid to the plating bath, the rate of deposition was increased considerably, and each of the complexing agents showed a maximum deposition rate plateau around a particular concentration of the complexing agent. The rate of deposition was increased with increasing either temperature or pH, but microstructure of the surface became more rough. Furthermore, empirical rate law of the elecltroless nickel deposition on high alumina ceramics was discussed with the activation energy and other rate parameters calculated.

  • PDF

High rate deposition and mechanical properties of SiOx film on PET and PC polymers by PECVD with the dual frequencies UHF and HF at low temperature

  • Jin, Su-B.;Choi, Yoon-S.;Choi, In-S.;Han, Jeon-G.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.180-180
    • /
    • 2010
  • The design and implementation of high rate deposition process and anti-scratch property of silicon oxide film by PECVD with UHF power were investigated according to the effect of UHF input power with HF bias. New regime of high rate deposition of SiOx films by hybrid plasma process was investigated. The dissociation of OMCTS (C8H24Si4O4) precursor was controlled by plasma processes. SiOx films were deposited on polyethylene terephthalate (PET) and polycarbonate substrate by plasma enhanced chemical vapor deposition (PECVD) using OMCTS with oxygen carrier gas. As the input energy increased, the deposition rate of SiOx film increased. The plasma diagnostics were performed by optical emission spectrometry. The deposition rate was characterized by alpha-step. The mechanical properties of the coatings were examined by nano-indenter and pencil hardness, respectively. The deposition rate of the SiOx films could be controlled by the appropriate intensity of excited neutrals, ionized atoms and UHF input power with HF bias at room temperature, as well as the dissociation of OMCTS.

  • PDF

27.12MHz PECVD에 의해 증착된 uc-Si의 I층 공정 파라미터 연구 (Study of I layer deposition parameters of deposited micro-crystalline silicon by PECVD at 27.12MHz)

  • 이기세;김선규;김선영;김상호;김건성;김범준
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.66.1-66.1
    • /
    • 2010
  • Microcrystalline silicon at low temperatures has been developed using plasma enhanced chemical vapor deposition (PECVD). It has been found that energetically positive ion and atomic hydrogen collision on to growing surface have important effects on increasing growth rate, and atomic hydrogen density is necessary for the increasing growth rate correspondingly, while keeping ion bombardment is less level. Since the plasma potential is determined by working pressure, the ion energy can be reduced by increasing the deposition pressure of 700-1200 Pa. Also, correlation of the growth rate and crystallinity with deposition parameters such as working pressure, hydrogen flow rate and input power were investigated. Consequently an efficiency of 7.9% was obtained at a high growth rate of 0.92 nm/s at a high RF power 300W using a plasma-enhanced chemical vapor deposition method (27.12MHz).

  • PDF

Numerical Simulations of Dry and Wet Deposition over Simplified Terrains

  • Michioka, T.;Takimoto, H.;Ono, H.;Sato, A.
    • Asian Journal of Atmospheric Environment
    • /
    • 제11권4호
    • /
    • pp.270-282
    • /
    • 2017
  • To evaluate the deposition amount on a ground surface, mesoscale numerical models coupled with atmospheric chemistry are widely used for larger horizontal domains ranging from a few to several hundreds of kilometers; however, these models are rarely applied to high-resolution simulations. In this study, the performance of a dry and wet deposition model is investigated to estimate the amount of deposition via computational fluid dynamics (CFD) models with high grid resolution. Reynolds-averaged Navier-Stokes (RANS) simulations are implemented for a cone and a two-dimensional ridge to estimate the dry deposition rate, and a constant deposition velocity is used to obtain the dry deposition flux. The results show that the dry deposition rate of RANS generally corresponds to that observed in wind-tunnel experiments. For the wet deposition model, the transport equation of a new scalar concentration scavenged by rain droplets is developed and used instead of the scalar concentration scavenged by raindrops falling to the ground surface just below the scavenging point, which is normally used in mesoscale numerical models. A sensitivity analysis of the proposed wet deposition procedure is implemented. The result indicates the applicability of RANS for high-resolution grids considering the effect of terrains on the wet deposition.

대향타겟식 스퍼터링 장치의 공정 조건에 따른 SiO2 가스 차단막의 특성 (Characteristics of SiO2 Gas Barrier Films as a Function of Process Conditions in Facing Target Sputtering (FTS) System)

  • 배강;왕태현;손선영;김화민;홍재석
    • 한국전기전자재료학회논문지
    • /
    • 제22권7호
    • /
    • pp.595-601
    • /
    • 2009
  • For the silicon oxide $(SiO_x)$ films prepared by using the facing target sputtering (FTS) apparatus that was manufactured to enhance the preciseness of the fabricated thin-film and sputtering yield rate by forming a higher-density plasma in the electrical discharge space for using it as a thin-film passivation system for flexible organic light emitting devices (FOLEDs). The deposition characteristics were investigated under various process conditions, such as array of the cathode magnets, oxygen concentration$(O_2/Ar+O_2)$ introduced during deposition, and variations of distance between two targets and working pressure. We report that the optimum conditions for our FTS apparatus for the deposition of the $SiO_x$ films are as follows: $d_{TS}\;and\;d_{TT}$ are 90mm and 120mm, respectively and the maximum deposition rate is obtained under a gas pressure of 2 mTorr with an oxygen concentration of 3.3%. Under this optimum conditions, it was found that the $SiO_x$ film was grown with a very high deposition rate of $250{\AA}$/min by rf-power of $4.4W/cm^2$, which was significantly enhanced as compared with a deposition rate (${\sim}55{\AA})$/min) of the conventional sputtering system. We also reported that the FTS system is a suitable method for the high speed and the low temperature deposition, the plasma free deposition, and the mass-production.

DEPOSITION CHARACTERISTICS OF HIGH-THERMAL-CONDUCTIVITY STEEL IN THE DIRECT ENERGY DEPOSITION PROCESS AND ITS HARDNESS PROPERTIES AT HIGH TEMPERATURES

  • JONG-YOUN SON;GWANG-YONG SHIN;KI-YONG LEE;HI-SEAK YOON;DO-SIK SHIM
    • Archives of Metallurgy and Materials
    • /
    • 제65권4호
    • /
    • pp.1365-1369
    • /
    • 2020
  • Direct energy deposition (DED) is a three-dimensional (3D) deposition technique that uses metallic powder; it is a multi-bead, multi-layered deposition technique. This study investigates the dependence of the defects of the 3D deposition and the process parameters of the DED technique as well as deposition characteristics and the hardness properties of the deposited material. In this study, high-thermal-conductivity steel (HTCS-150) was deposited onto a JIS SKD61 substrate. In single bead deposition experiments, the height and width of the single bead became bigger with increasing the laser power. The powder feeding rate affected only the height, which increased as the powder feeding rate rose. The scanning speed inversely affected the height, unlike the powder feeding rate. The multi-layered deposition was characterized by pores, a lack of fusion, pores formed by evaporated gas, and pores formed by non-molten metal inside the deposited material. The porosity was quantitatively measured in cross-sections of the depositions, revealing that the lack of fusion tended to increase as the laser power decreased; however, the powder feeding rate and overlap width increased. The pores formed by evaporated gas and non-molten metal tended to increase with rising the laser power and powder feeding rate; however, the overlap width decreased. Finally, measurement of the hardness of the deposited material at 25℃, 300℃, and 600℃ revealed that it had a higher hardness than the conventional annealed SKD61.

Substrate Temperature Dependence of Microcrystalline Silicon Thin Films by Combinatorial CVD Deposition

  • Kim, Yeonwon
    • 한국표면공학회지
    • /
    • 제48권3호
    • /
    • pp.126-130
    • /
    • 2015
  • A high-pressure depletion method using plasma chemical vapor deposition (CVD) is often used to deposit hydrogenated microcrystalline silicon (${\mu}c-Si:H$) films of a low defect density at a high deposition rate. To understand proper deposition conditions of ${\mu}c-Si:H$ films for a high-pressure depletion method, Si films were deposited in a combinatorial way using a multi-hollow discharge plasma CVD method. In this paper the substrate temperature dependence of ${\mu}c-Si:H$ film properties are demonstrated. The higher substrate temperature brings about the higher deposition rate, and the process window of device quality ${\mu}c-Si:H$ films becomes wider until $200^{\circ}C$. This is attributed to competitive reactions between Si etching by H atoms and Si deposition.

유도 결합 플라즈마 스퍼터 승화법을 이용한 고속증착 시스템 (High Rate Deposition System by Inductively Coupled Plasma Assisted Sputter-sublimation)

  • 최지성;주정훈
    • 한국표면공학회지
    • /
    • 제45권2호
    • /
    • pp.75-80
    • /
    • 2012
  • A sputter-sublimation source was tested for high rate deposition of protective coating of PEMFC(polymer electrolyte membrane fuel cell) with high electrical conductivity and anti-corrosion capability by DC biasing of a metal rod immersed in inductively coupled plasma. A SUS(stainless steel) tube, rod were tested for low thermal conductivity materials and copper for high thermal conductivity ones. At 10 mTorr of Ar ICP(inductively coupled plasma) with 2.4 MHz, 300 W, the surface temperature of a SUS rod reached to $1,289^{\circ}C$ with a dc bias of 150 W (-706 V, 0.21 A) in 2 mins. For 10 min of sputter-sublimation, 0.1 gr of SUS rod was sputter-sublimated which is a good evidence of a high rate deposition source. ICP is used for sputter-sublimation of a target material, for substrate pre-treatment, film quality improvement by high energy particle bombardment and reactive deposition.

Carbide분말상의 무전해 도금 (Electroless Deposition on Carbide Powders)

  • 이창언;최순돈
    • 한국표면공학회지
    • /
    • 제28권1호
    • /
    • pp.3-13
    • /
    • 1995
  • Electroless Ni and Cu platings were conducted on $B_4C$ and SiC. In the electroless Ni plating, the deposition rate on $B_4C$ was higher than on SiC. However, the electroless Cu deposition occured with high deposition rate regardless of the carbide substrates used in this study. Uniformity of the deposits was better in the electroless Cu deposition than in the electroless Ni deposition. In the topographies of the electroless depositions, Ni deposits have grown as colony, whereas Cu deposits have grown as fine individual grains.

  • PDF

High quality fast growth nano-crystalline Si film synthesized by UHF assisted HF-PECVD

  • Kim, Youn-J.;Choi, Yoon-S.;Choi, In-S.;Han, Jeon-G.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.306-306
    • /
    • 2010
  • A high density (> $10^{11}\;cm^{-3}$) and low electron temperature (< 2 eV) plasma is produced by using a conventional HF (13.56 MHz) plasma enhanced chemical vapor deposition (PECVD) with an additional ultra high frequency (UHF, 314 MHz) plasma source utilizing two parallel antenna assembly. It is applied for the high rate synthesis of high quality nanocrystalline silicon (nc-Si) films. A high deposition rate of 1.8 nm/s is achieved with a high crystallinity (< 70%), a low spin density (< $3{\times}10^{16}\;cm^{-3}$) and a high light soaking stability (< 1.5). Optical emission spectroscopy measurements reveal emission intensity of $Si^*$ and $SiH^*$, intensity ratio of $H{\alpha}/Si^*$ and $H{\alpha}/SiH^*$ which are closely related to film deposition rate and film crystallinity, respectively. A high flux of precursor and atomic hydrogen which are produced by an additional high excitation frequency is effective for the fast deposition of highly crystallized nc-Si films without additional defects.

  • PDF