• Title/Summary/Keyword: high density microarray

Search Result 33, Processing Time 0.024 seconds

Identification of the Marker-Genes for Dioxin(2, 3, 7, 8- tetradibenzo-p-dioxin)-Induced Immune Dysfunction by Using the High-Density Oligonucleotide Microarray

  • Kim, Jeong-Ah;Lee, Eun-Ju;Chung, In Hye;Kim, Hyung-Lae
    • Genomics & Informatics
    • /
    • v.2 no.2
    • /
    • pp.75-80
    • /
    • 2004
  • In a variety of animal species, the perinatal exposure of experimental animals to the 2,3,7,8-tetrachlorodibenzo­p-dioxin (TCDD) leads to the immune dysfunction, which is more severe and persistent than that caused by adult exposure. We report here the changes of gene expression and the identification of the marker-genes representing the dioxin exposure. The expressions of the transcripts were analyzed using the 11 K oligonucleotide­microarray from the bone marrow cells of male C57BL/6J mice after an intraperitoneal injection of $1{\mu}g$ TCDD/kg body weight at various time intervals: gestational 6.5 day(G6.5), 13.5 day(G13.5), 18.5 day(G18.5), and postnatal 3 (P3W)and 6 week (P6W). The type of self-organizing maps(SOM) representing the specific exposure dioxin could be identified as follows; G6.5D(C14), G13.5D(C0, C5, C10, C18), G18.5D(7): P3W(C2, C21), and P6W(C4, C15, C20). The candidate marker-genes were restricted to the transcripts, which could be consistently expressed greater than $\pm$2-fold in three experiments. The resulting candidates were 85 genes, the characteristics of that were involved in cell physiology and cell functions such as cell proliferation and immune function. We identified the biomarker-genes for dioxin exposure: smc -like 2 from SOM C14 for the dioxin exposure at G6.5D, focal adhesion kinase and 6 other genes from C0, and protein tyrosine phosphatase 4a2 and 3 other genes from C5 for G13.5D, platelet factor 4 from C7 for G18.5D, fos from C2 for P3W.

Effects of High Stocking Density on the Expressions of Stress and Lipid Metabolism Associated Genes in the Liver of Chicken (닭의 고밀도 사양체계가 스트레스 및 지방대사 연관 유전자 발현에 미치는 영향)

  • An, Young Sook;Park, Jeong Geun;Jang, In Surk;Sohn, Sea Hwan;Moon, Yang Soo
    • Journal of Life Science
    • /
    • v.22 no.12
    • /
    • pp.1672-1679
    • /
    • 2012
  • The effect of high stocking density (HSD) on the expression of stress and lipid metabolism associated genes in the liver of broiler chickens was examined by chicken genome array analysis. The chickens in a control group were randomly assigned to a $495cm^2/bird$ stocking density, whereas the chickens in a HSD group were arranged in a $245cm^2/bird$ stocking density with feeding ad libitum for 35 days. The chickens assigned to the HSD group had a significantly lower body weight, weight gain, and feed intake compared with those of the control group (p<0.05). The mortality of chickens was higher in the HSD group than in the control group. The microarray analysis indicated up-regulation of stress associated genes such as HMGCR, $HSP90{\alpha}$, HSPA5 (GRP78/Bip), DNAJC3 and ATF4, and down-regulation of interferon-${\gamma}$ and PDCD4 genes. The endoplasmic reticulum stress associated genes, HSPA5 (GRP78/Bip), DNAJC3 and ATF4, were highly expressed in the HSD group. The genes, ACSL5, TMEM195 and ELOVL6, involved in fatty acid synthesis, were elevated in the HSD group. The genes, ACAA1, ACOX1, EHHADH, LOC423347 and CPT1A, related to fatty acid oxidation, were also activated in the HSD group. These results suggest that a HSD rearing system stimulates the genes associated with fatty acid synthesis as well as fatty acid oxidation in the liver of broiler chickens.

Microarray Analysis of Gene Expression in Rat Glioma after Ethanol Treatment (에탄올 처리에 의한 흰쥐 신경아교종(Glioma) 세포에서의 유전자 발현 - DNA 칩을 이용한 분석 -)

  • Lee, So Hee;Oh, Dong-Yul;Han, Jin-Hee;Choi, Ihn-Geun;Jeon, Yang-Whan;Lee, Joon-Noh;Lee, Tae Kyung;Jeong, Jong-Hyun;Jung, Kyung Hwa;Chai, Young-Gyu
    • Korean Journal of Biological Psychiatry
    • /
    • v.14 no.2
    • /
    • pp.115-121
    • /
    • 2007
  • Objetives : Identification of target genes for ethanol in neurons is important for understanding its molecular and cellular mechanism of action and the neuropathological changes seen in alcoholics. The purpose of this study is to identify of altered gene expression after acute treatmet of ethanol in rat gliom cells. Methods : We used high density cDNA microarray chip to measure the expression patterns of multiple genes in cultured rat glioma cells. DNA microarrays allow for the simultaneous measurement of the expression of several hundreds of genes. Results : After comparing hybridized signals between control and ethanol treated groups, we found that treatment with ethanol increased the expression of 15 genes and decreased the expression of 12 genes. Upregulated genes included Orthodenticle(Drosophila) homolog 1, procollagen type II, adenosine A2a receptor, GATA bindning protein 2. Downregulated genes included diacylglycerol kinase beta, PRKC, Protein phosphatase 1, clathrin-associated protein 17, nucleoporin p58, proteasome. Conclusion : The gene changes noted were those related to the regulation of transcription, signal transduction, second messenger systems. modulation of ischemic brain injury, and neurodengeneration. Although some of the genes were previously known to be ethanol responsive, we have for the most part identified novel genes involved in the brain response to ethanol.

  • PDF

Clinicopathologic Features of Breast Carcinomas Classified by Biomarkers and Correlation with Microvessel Density and VEGF Expression: A Study from Thailand

  • Chuangsuwanich, Tuenjai;Pongpruttipan, Tawatchai;O-charoenrat, Pornchai;Komoltri, Chulaluk;Watcharahirun, Suwapee;Sa-nguanraksa, Doonyapat
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.3
    • /
    • pp.1187-1192
    • /
    • 2014
  • Background: To correlate breast cancer subtypes with prognostic factors, microvessel density (MVD), vascular endothelial growth factor (VEGF) expression and clinical features. Materials and Methods: One hundred cases of primary breast carcinoma were classified using biomarkers on tissue microarray as: luminal A [estrogen receptor (ER)+, HER2-, $Ki-67{\leq}14%$], luminal B [ER+, HER2+ or ER+, HER2-, Ki-67>14%], HER2, triple negative basal-like (TNB) [any basal cytokeratins (CKs, 5, 14, 17) and/or endothelial growth factor receptor (EGFR) expression], and TN without such markers [TNN, null], and assessed for p53, vimentin, VEGF and CD31 immunoperoxidase. Results: Of the 100 cases (mean age, 51 years; mean tumor size, 3.2cm; 56% with nodal metastasis; 89 invasive ductal carcinomas, not otherwise specified, 4 invasive lobular carcinomas, 3 metaplastic carcinomas, and 4 other types) there were 39 luminal A, 18 luminal B, 18 HER2, 15 TNB and 10 TNN. The positivities of basal-like markers in the basal-like subtype were 78.3% for CK5, 40% for CK14, 20% for CK17, 46.7% for EGFR. There was no significant difference in age distribution, tumor size, degree of tubular formation, pleomorphism, lymphovascular invasion, nodal metastasis, MVD, VEGF expression and survival among subgroups. TNs demonstrated significantly higher tumor grade, mitotic count, Ki-67 index, p53 and vimentin and decreased overall survival compared with nonTN. Conclusions: The distribution of breast cancer subtypes in this study was similar to other Asian countries with a high prevalence of TN. The high grade character of TN was confirmed and CK5 expression was found to be common in our basal-like subtype. No significant elevation of MVD or VEGF expression was apparent.

Gene Expression Profiling of Acetaminophen Induced Hepatotoxicity in Mice

  • Suh, Soo-Kyung;Jung, Ki-Kyung;Jeong, Youn-Kyoung;Kim, Hyun-Ju;Lee, Woo-Sun;Koo, Ye-Mo;Kim, Tae-Gyun;Kang, Jin-Seok;Kim, Joo-Hwan;Lee, Eun-Mi;Park, Sue-Nie;Kim, Seung-Hee;Jung, Hai-Kwan
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.4
    • /
    • pp.236-243
    • /
    • 2006
  • Microarray analysis of gene expression has become a powerful approach for exploring the biological effects of drugs, particularly at the stage of toxicology and safety assessment. Acetaminophen (APAP) has been known to induce necrosis in liver, but the molecular mechanism involved has not been fully understood. In this study, we investigated gene expression changes of APAP using microarray technology. APAP was orally administered with a single dose of 50 mg/kg or 500 mg/kg into ICR mice and the animals were sacrificed at 6, 24 and 72 h of APAP administration. Serum biochemical markers for liver toxicity were measured to estimate the maximal toxic time and hepatic gene expression was assessed using high-density oligonucleotide microarrays capable of determining the expression profile of >30,000 well-substantiated mouse genes. Significant alterations in gene expression were noted in the liver of APAP-administered mice. The most notable changes in APAP-administered mice were the expression of genes involved in apoptosis, cell cycle, and calcium signaling pathway, cystein metabolism, glutatione metabolism, and MAPK pathway. The majority of the genes upregulated included insulin-like growth factor binding protein 1, heme oxygenase 1, metallothionein 1, S100 calcium binding protein, caspase 4, and P21. The upregulation of apoptosis and cell cycle-related genes were paralleled to response to APAP. Most of the affected gene expressions were returned to control levels after 72 hr. In conclusion, we identified potential hepatotoxicity makers, and these expressions profiling lead to a better understanding of the molecular basis of APAP-induced hapatotoxicity.

Gene Expression Profiling of SH-SY5Y Human Neuroblastoma Cells Treated with Ginsenoside Rg1 and Rb1 (Ginsenoside Rg1 및 Rb1을 처리한 신경세포주(SH-SY5Y세포)의 유전자 발현양상)

  • Lee, Joon-Noh;Yang, Byung-Hwan;Choi, Seung-Hak;Kim, Seok-Hyun;Chai, Young-Gyu;Jung, Kyoung-Hwa;Lee, Jun-Seok;Choi, Kang-Ju;Kim, Young-Suk
    • Korean Journal of Biological Psychiatry
    • /
    • v.12 no.1
    • /
    • pp.42-61
    • /
    • 2005
  • Objectives:The ginsenoside Rg1 and Rb1, the major components of ginseng saponin, have neurotrophic and neuroprotective effects including promotion of neuronal survival and proliferation, facilitation of learning and memory, and protection from ischemic injury and apoptosis. In this study, to investigate the molecular basis of the effects of ginsenoside on neuron, we analyzed gene expression profiling of SH-SY5Y human neuroblastoma cells treated with ginsenoside Rg1 or Rb1. Methods:SH-SY5Y cells were cultured and treated in triplicate with ginsenoside Rg1 or Rb1($80{\mu}M$, $40{\mu}M$, $20{\mu}M$). The proliferation rates of SH-SY5Y cells were determined by MTT assay and microscopic examination. We used a high density cDNA microarray chip that contained 8K human genes to analyze the gene expression profiles in SH-SY5Y cells. We analyzed using the Significance Analysis of Microarray(SAM) method for identifying genes on a microarray with statistically significant changes in expression. Results:Treatment of SH-SY5Y cells with $80{\mu}M$ ginsenoside Rg1 or Rb1 for 36h showed maximal proliferation compared with other concentrations or control. The results of the microarray experiment yielded 96 genes were upregulated(${\geq}$3 fold) in Rg1 treated cells and 40 genes were up-regulated(${\geq}$2 fold) in Rb1 treated cells. Treatment with ginsenoside Rg1 for 36h induced the expression of some genes associated with protein biosynthesis, regulation of transcription or translation, cell proliferation and growth, neurogenesis and differentiation, regulation of cell cycle, energy transport and others. Genes associated with neurogenesis and neuronal differentiation such as SCG10 and MLP increased in ginsenoside Rg1 treated cells, but such changes did not occur in Rb1-group. Conclusion:Our data provide novel insights into the gene mechanisms involved in possible role for ginsenoside Rg1 or Rb1 in mediating neuronal proliferation or cell viability, which can elicit distinct patterns of gene expression in neuronal cell line. Ginsenoside Rg1 have more broad and strong effects than ginsenoside Rb1 in gene expression and related cellular physiology. In addition, we suggest that SCG10 gene, which is known to be expressed in neuronal differentiation during development and neuronal regeneration during adulthood, may have a role in enhancement of activity dependent synaptic plasticity or cytoskeletal regulation following treatment of ginsenoside Rg1. Further, ginsenoside Rg1 may have a possible role in regeneration of injured neuron, promotion of memory, and prevention from aging or neuronal degeneration.

  • PDF

The Effects of Schizandrae Fructus Chloroform Fraction on Gene Expression in Liver Tissue of Dyslipidemic Mice (오미자(五味子) 클로로포름 분획물이 이상지질혈증 생쥐의 지질대사 및 간 조직 유전자 변화에 미치는 영향)

  • Shin, Yoon Ri;Kim, Young Kyun;Kim, Kyoung Min
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.15 no.2
    • /
    • pp.111-122
    • /
    • 2015
  • Objectives: Schizandrae fructus (Schizandra chinensis) is one of very common herbs, it is known as natural antioxidants, anti-inflammatory agent. Also some reports show that its extract works to regulate of dyslipidemia. This study was designed to investigate the effects of Schizandrae fructus chloroform fraction (SFCF) on serum lipid levels in dyslipidemic mice. Methods: The levels of total cholesterol, high density lipoprotein-cholesterol, triglyceride, aspartate aminotransferase (AST), alanine aminotransferase (ALT), fasting blood glucose in serum were measured. Histopathological and gene expression changes in liver tissue were also observed. Results: Oral administration of SFCF lowered levels of total cholesterol and triglyceride, which were elevated by high-fat diet. But SFCF did not affect on weight changes and serum AST, ALT levels in dyslipidemic mice. After carrying out gene ontological analysis, large numbers of genes in high-fat diet group were up-(347) or down-regulated (235). In SFCF treated mice, some changed expression of the genes was restored to normal levels, with a recovery rate of 17%. And it seems that fatty acid biosynthesis pathway was one of important key pathways to recovery. Conclusions: SFCF has beneficial effect on dyslipidemia, and could be used to prevent and treat cardiovascular disease.

Glucocorticoid Regulation of Gene Expression in Hippocampal CA3 and Dentate Gyrus (글루코코티코이드 호르몬에 의한 뇌해마의 CA와 Dentate Gyrus 부분의 유전자 발현 변화)

  • Kim, Dong-Sub;Ahn, Soon-Cheol;Kim, Young-Jin;Park, Byoung-Keun;Ahn, Yong-Tae;Kim, Ji-Youn;Kyoji, Morita;Her, Song
    • Journal of Life Science
    • /
    • v.17 no.3 s.83
    • /
    • pp.305-311
    • /
    • 2007
  • Glucocorticoids (GCs) alter metabolism, synaptogenesis, apoptosis, neurogenesis, and dendritic morphology in the hippocampus. To better understand how glucocorticoids regulate these aspects of hippocampal biology, we studied gene expression patterns in the CA3 (Hippocampal pyramidal cell field CA3) and dentate gyrus (DG). Litter-matched Lewis inbred rats treated for 20 days with either 9.5 mg per day sustained-release corticosterone or placebo pellets were compared with high-density oligonucleotide microarray analysis (Rat Neurobiology U34 Arrays, Affymetrix). In placebo-treated rats, 32 genes were expressed at greater levels in CA3 than DG, whereas 3 genes were expressed at great levels in DC than CA3. Regional differences were also apparent in corticosterone-induced changes in the hippocampal transcriptome. Six genes in CA3 and 41 genes in DC were differentially regulated by corticosterone. As per the glucocorticoid effects on gene transcription in the brain, forty three of these genes were upregulated, and 4 genes were downregulated. Genes differentially expressed in hippocampus included those for 13 neurotransmitter proteins, 5 ion channel related proteins, 4 transcription factors, 3 neurotrophic factors, 1 cytokine, 1 apoptosis related protein, and 5 genes involved in synaptogenesis. Interestingly, GCs can have suppressive effects on brain BDNF mRNA transcription, one of the neurotrophic factors. These results indicate the diversity of targets affected by chronic exposure to corticosterone and highlight important regional differences in hippocampal neurobiology.

In Vitro Biological Characterization of DCUN1D5 in DNA Damage Response

  • Guo, Wei;Li, Guo-Jun;Xu, Hong-Bo;Xie, Jie-Shi;Shi, Tai-Ping;Zhang, Sheng-Zhong;Chen, Xiao-Hong;Huang, Zhi-Gang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.8
    • /
    • pp.4157-4162
    • /
    • 2012
  • Background: Novel prognostic biomarkers or therapeutic molecular targets for laryngeal squamous cell carcinoma (LSCC) are an urgent priority. We here sought to identify multiple novel LSCC-associated genes. Methods: Using high-density microarray expression profiling, we identified multiple genes that were significantly altered between human LSCCs and paired normal tissues. Potential oncogenic functions of one such gene, DCUN1D5, were further characterized in vitro. Results: Our results demonstrated that DCUN1D5 was highly expressed in LSCCs. Overexpression of DCUN1D5 in vitro resulted in 2.7-fold increased cellular migration, 67.5% increased invasive capacity, and 2.6-fold increased proliferation. Endogenous DCUN1D5 expression was decreased in a time-dependent manner after genotoxic stress, and silencing of DCUN1D5 by siRNA decreased the number of cells in the S phase by 10.2% and increased apoptosis by 11.7%. Conclusion: Our data suggest that DCUN1D5 in vitro might have vital roles in DNA damage response, but further studies are warranted to assess its significance in vivo.

Immunosignature: Serum Antibody Profiling for Cancer Diagnostics

  • Chapoval, Andrei I;Legutki, J Bart;Stafford, Philip;Trebukhov, Andrey V;Johnston, Stephen A;Shoikhet, Yakov N;Lazarev, Alexander F
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.12
    • /
    • pp.4833-4837
    • /
    • 2015
  • Biomarkers for preclinical diagnosis of cancer are valuable tools for detection of malignant tumors at early stages in groups at risk and screening healthy people, as well as monitoring disease recurrence after treatment of cancer. However the complexity of the body's response to the pathological processes makes it virtually impossible to evaluate this response to the development of the disease using a single biomarker that is present in the serum at low concentrations. An alternative approach to standard biomarker analysis is called immunosignature. Instead of going after biomarkers themselves this approach rely on the analysis of the humoral immune response to molecular changes associated with the development of pathological processes. It is known that antibodies are produced in response to proteins expressed during cancer development. Accordingly, the changes in antibody repertoire associated with tumor growth can serve as biomarkers of cancer. Immunosignature is a highly sensitive method for antibody repertoire analysis utilizing high density peptide microarrays. In the present review we discuss modern methods for antibody detection, as well as describe the principles and applications of immunosignature in research and clinical practice.